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On Direct Methods for Solving SMetric Systems

of Linear Equations

by

James Raymond Bun:h

Abstract

There has been no stable direct method for solving symmetric

systems of linear equations which takes advantage of the symmetry. If

the system is also positive definite, then fast, stable direct methods

(e.g., Cholesky and symmetric Gaussian elimination) exist which preserve

the symmetry. These methods are unstable for symmetric indefinite sys-

tf s. Such systems often occur in the calculation of eigenvectors.

Gaussian eliminatiun with partial or complete pivoting is currently

recommended for solving symmetric indefinite systems, and here symmetry

is lost.

We present a generalization of symmetric Gaussian elimination,

called the diagonal pivoting method, in which pivots of order two as

F well as one are allowed in the decomposition. We show that the diagonal

pivoting method for symmetric indefinite matrices takes advantage of

symmetry Lo that only n'n multiplications, at most I n3 additions,
6 3

and 2 storage locations are required to solve A x - b , where A

is a non-singular symmetric matrix of order n . Furthermore, we--shwQ

that the method is nearly as stable as Gaussian elimination with complete

pivoting, while requiring only half the number of operations and half

the storage.

L.... .... .. ... ...... ....... ... .... ......



We inzlude a listing of an Algol procedure for the diagonal

pivoting method, which is applicable both to symmetric definite and

indefinite systems.

We discuss the problem of symmetric band matrices and present

an algorithm only for the tridiagonal case. Fur~ther, we discuss the

problem Of 'Oquillhrattng symmetric matrices while preserving symmetry

and we present a simple algorithim (and Algol procedure) for accomplishing

thiti.
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Chapter 1 ; Introduction

1.1 Symmitric Syatem of Linear Lquations

Let us consider direct methods for solving the system of linear

algebraic equations, A x - b, where A is symmetric.

if A is alo positive definite, then Cholesky's method (§2.7)

and :: L D Lt method (§2.6) are fast, stable, and preserve symmetry.

Tf A is symmetric but indef3nite (neither positi e definite nor

negative definite), Cholesky's method and the L D Lt method are unstable

.nd can produce very inaccurate results (§2.8).

At the present time, if A is symmetric indefinite, Gaussian

elimination with partial or complete pivoting is recommended for solving

the system (Fox, p. 80, 185), and thus the symmetry of A is ot no

advantage.

Is there an algorithm for the symmetric indefinite case wh'ch is

stable, is faster than Gaussian elimination, and can take advantage

of the symmetry?

1.2 Our Contribution

We discuss the problem is Chapter 2 and review previous efforts in

Chapter 3. In Chapters 4-6 we present a laethod, called diagonal pivoting,

which fulfills the above requirements whet restricted to equilibrated

matrices, In Chapter 7 we present a metbod for equilibrating symmetric

matricua in a very simple manner. A variation of the diaLonal pivoting

method is presented in Chapter 8i this method is applicable to unequili-



brated matrices and it fulfills. the above-mentioned requirements. In

Chapter 9 we show that the diagonal pivoting method is almost as fast

as Cholesky or L D Lt. In Chapter 10 we perform a backwards error

analysis. In Chapters 11-12 we show that the method is essentially as

stable as Gaussian elimination with complete pivoting (in the sense of

Wilkinson's analysis for Gauss'an elimination with completely pivoting,

Wilkinson (19b1)). In Chapter 13 we show that iterative improvement is

as applicable here as it Is for Gaussian elimination. In Chapter 14

we discuss the problem of symmetric band matrices.

All the results proved are applicable to complex systems where A

is Hermitian.

1.3 Summary

Let A be an n x n matrix with max IAij 1
iiij

We want to solve A x - b.
k-1

Let - C N denote C N + I C Ni  where the C 0 < i < k
i-O

ore constants independent of n

Let G.E. denote Gaussian elimin-aticn.

The situation is summarized in the following table:
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-Bound on
Restric- Element
tio-as Number of Number of Growth

Method on A AuhLOAlications Additions Storage StaLlityl

G.E. with 1 i 2in
complete det A 0 -n 3 n n /nf (n)
pivoting

G.E, with 1
partial det A 0 3 n n2
pivoting

Cholesky symmetric 1 2

Method positive n n 2

definite

Diagonal symmetric, 1 n 3 1 n 2  n f (n)
Pivoting det A #0 T- 4 n c"< - -1 3c (ot) h (n. a)

3 n

~1l/2
n -

- 3

Here 0 < a < I, f(n) - k i , h(n,a) is a function
k-2

dependent on the pivotal strategy, and c(a) and h(n,a) are defined in

0.4469§11.6-7. In Chapter 12 we show that c(c)h(n,) <. 3.07(n-1) < 3 v'nn
for a - (I + 17)18 -c

0

1.4 Origin of Symmetric Indefinite System's

The problem of indefinite systems cf linear equations is sometimes

dismissed as academic by the claim that physical pr-blems always generate

positive definite systems of linear equations. However, the numerical

solution of natural problems often gives rise to situations which do not

have a physical origin. We give two related examples.

In the Rayleigh Quotient Iteration for finding eigenvalues of a

positive definite matrix A (Wilkinson (1965), p. 172, and particularly

£i
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p. 629) we need to solve the systems ( A - ri ) Xi+ xi  where

ri = xi A x i/ xi xi  Here A - r I cannot be definite because

r lies between the extreme eigenvalues.

In the inverse iteration method for finding the eigenvector corres-

ponding to an approximation \ to an intermediate eigenvalue of a

positive definite matrix A, we need to solve ( A - X I) v i+ I  u,

u i+ 1 - vi+ / max (v i+I ) .A - X I can be indefinite even when A is

positive definite (Wilkinson (1965), pp. 618-635).

I!
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Chapter 2 Presentation of the Problem

2.1 Introduction

The speed and storage capacities of current digital computers

allow us to solve large systems of linear equations by direct methods.

Here we shall consider direct methods for solving a system of linear

equations, A x - b , whe-e A is symmetric and det A 0 0

2.2 General Problem : Exact Arithmetic

First let us consider the solution, in exact arithmetic, of

A x b , where A is general and det A # 0 . We know that Gaussian

elimination will give the aolution provided that whenever a zero appears

in the leading diagonal position we interchange that row with a lower

row with non-zero leading element (such a row will exist since

det A 0 0), e.g. if A = 0 and if j is the least integer for which

A ji 0 , then we interchange rows I and j . Or, equivalently, there

exists a permutation matrix P such that Gaussian elimination without

interchanges applied to P A will give us the solution.

Since we could also do the same with columns instead of with rows,

there exists a permutation matrix Q such that Gaussian elimination

without interchanges applied to A Q ,.,1l1 give us the solution.

In matrix notation the Gaussian elimination algorithm factors A

into A - L U , where L is unit lower triangular, U is upper triangular,

and L and U are unique when they exist (Wilkinson (1965), p. 204).

Thus " xact arithmetic there exist permutation matrices P and Q
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such that P A = L U and A Q = L2 U2 , provided only that

der AO0

2.3 General Problem : Failure of Previous Attempts in Finite

Precision Arithmetic

In finite precision arithmetic (Wilkinson, 1963) the above algo-

ricIhm can fail if we interchange only under the condition that the ele-

ment in the leading diagonal position be zero.

Let A [ and b [

Then A L [J = [ [ However, if c and n are
Li/: n1 -or 1/1

small enough, then in finite precision arithmetic the operation i - i/c

yields -I/c .

Let U and x be the matrix and vector of the values of U
C c

and x, respectively, computed in finite precision.

Then U = and a - b 2]

So xo -J.I c- IISo x-U' a - Kll) / , but xc mU co

If n cE, then x i and the error in the first component

of the computed solution is Id
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2.4 Condition of a Matrix

Wilkinson (1965, pp. 189-191) shows that the relative error in the

solution of a system of linear equations is bounded in proportion to

the condition number of A , K(A) - |A| |A I' > I , i.e., if e - x x c~C

then lel / Ix1 < p(A) K(A) We should not expect a small error if

K(A) is large.

Here A has a very satisfactory condition number. A-' [ 2I.]
n

Using the one-norm, 1A1 ma IAij1, we have K(A) - AI 1A- 11 =
J i-I 1

[l + max(IclIn)]11 - n,'l

The computer replaces Cn - I by --I, and the computed inverse is

(A-l L Then bA- b - Thus the trouble lies in

the Gaussian elimination algorithmn, not in the matrix A

2.5 General Case : Stable Direct Methods

(a) Direct Inversion

Direct inversion (the formation of A ) of a system requires - n

each of multiplications and additions (Fox, pp. 177-179). Gaussian eli-

mination, however, requires only n each of multiplications and
3

additions. Thus we would prefer to use Gaussian elimination if we could

obtain a satisfactory solution.



8

(b) Stability

Let us attempt to solve A x - b , where A is nxn and

det A # 0 . If x is the solution we obtain from the computer, wec

may consider x to be the exart solution of the system (A + E) y - b

We might say that the algorithm we use is stable if the elements of E

are small in comparison to the corresponding elements of A . Actually

the term is more often used when 1E / 1A1 is small. (Here I I

is any norm.)

(c) Stability for Gaussian Elimination

Wilkinson (1960) showed that for Gaussian elimination we have:

1 2.01 max(1,J)2 A(n-k+l) where t is the numberEiji < .1 ~-iJ2 -  a rs I

of binary digits in the machine, k = min(i,j), and A(n-k+l) is the

reduced matrix of order n-k+l in the elimination process.

The important lesson from the above is that we must be interested

in keeping the elements in the reduced matrices small. There are two

well-known strategies for choosing permutation matrices P and Q

such that Gaussian elimination without interchanges applied to P A Q

will provide sufficiently small element growth in the reduced matrices.

(d) Complete Pivoting

The first strategy, called complete pivoting, requires that we

bring the largest element in the reduced matrix into the leading diagonal

position. This strategy is called complete since we search the entire

reduced matrix. Wilkinson showed that this complete strategy gives

t I I =-- --" Imom
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1

max Ik+ < vf(k)max A where f(k) 2  k r r

i ,j i ,j r-2

In words, the elements in the reduced matrices can never become too

large; so this strategy is never bad. It is conjectured that the true

bound is max -A n-k+J<) k where A to real (A2.4).

Equivalently, the above says that there exist permutation matrices

P and Q such that Gaussian elimination without interchanges applied

to P A Q gives max 1E ij 1 2.01 n3 /2 f(n) 2
- t max 1A i

i ,J iJ

(e) Partial Pivoting

The second strategy, called partial pivoting, requires that we

bring the largest element in the first column of the reduced matrix

into the leading diagonal position. This strategy is called partial

since we search only a part of the reduced matrix. This is equivalent

to the application of Gaussian elimination without interchages to P A

4h-k+lV k
where P is a permutation matrix. Here max ;A- < 2

1I 0 0 0 i- 1 0 0 II

1 0 1

This bound is sharp since A - . .  , where A is

nxn , has A(n) = n . Thus max JE -I < 2.01 n 2- t 2 n max IA I
nn i ji j

and this is very weak when n > t

Correspondingly, we could use a partial pivoting strategy in which

we bring the largest element in the first row of the reduced matrix into I
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the leading diagonal position. Thus there exists a permutation matrix

such that Gaussian elimination without interchanges applied to A Q
2-  n

has an error matrix E with max tEijI < 2.01 n max l~i
iji,j

(f) The Error Matrix

We see that the error matrix E is dependent on the decomposition

L,U , the matrix A , the right hand side b , and the permutations P

and Q by which we can pre- and post-multiply A , i.e. E -

E(L, U, A, b, I', Q) , where L U - P A Q . (For the partial pivoting

strategy on the first column of the reduced matrix, we take Q - I in

the above.)

2.6 Symmetric Case : Direct Methods

If A is symmetric, then we can only apply congruences to A if

we want to preserve symmetry. In particular, whenever we interchange

two rows, we must also interchange the corresponding columns. Thus

only a diagonal element can be brought into the leading diagonal position.

The cymmetric form of the Gaussian elimination decomposition L U gives

t

the decomposition L D Lt , where L is unit lower triangular, D is

diagonal, and Lt  is the transpose of L . Since we may only perform

congruences on A , the error matrix is E - E(L, D, A, b, N, N t ) where

ttN is a permutation matrix such that L D L N A N

2.7 Symmetric Positive Definite Case

(a) Cholesky's Method

The Cholesky decomposition (Wilkinson (1965), pp. 229-232) is the

most well-known decomposition for a positive definite matrix A
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I t 11

(i.e. x Ax > 0 for x 0) Here A L L where L is lower

triangular. No interchanges are re4uired for stability.

(b) L D Lt  Decomposition _

If A is positive definite, then its L D Lt  decomposition (the1

symmetric form of Gaussian elimination) is stable in the absence of

unde.rtluw and overflow. The elements of L can be arbitrarily large,

but if they do not overflow then in fact the error matrix E is as

small as the error matrix for the Cholesky decomposition of A .

1/2
(Note: L - L D )

(c) Method of Congruent Transformations

This method (Westlake, p. 21; De Meersman and Schctsmans, (1964)) uses

decomposition (b) with interchanges. Here the largest diagonal element is

brought into the leading diagonal position at each step. If A is posi-

tive definite, then the elements of L are bounded by 1 and the

method is stable.

(d) Summary

If A is positive definite, then the above three methods are stable.

If A is nxn , then each method requires n2  storage positions,

1 n3 multiplications, and n 3  additions to solve A x - b
6 6

2.8 Symmetric Case : Failure of Cholesky and L D L t Methods in
Exact Arithmetic

If A is symmetric but indefinite, then the L D L decomposition,

the method of congruent transformations, and the Cholesky decomposition

fail in exact arithmetic for a matrix as simple as

A [ 1 that is, there exists no permutation matrix N such :hat

= - =- =



12

N A Nt has an L D L or an L Lt decomposition.

Note that L Lt is always positive semi-definite. Thus Cholesky

decomposition will fail in exact arithmetic whenever A is indefinite

tt

dnd det A ' 0 ,i.e. there exists no permutation N such that N A Nt -

L Lt where L Is lower triangular.

'file L D Lt decomposition and the method of congruent transfor-

mations will fail in exact arithmetic whenever all the diagonal elements

in a reduced matrix are zero, i.e. there exists no permutation N such

that N A Nt has an L D Lt decomposition.

2.9 Symmetric Case : Failure of L D Lt in Finite Precision Arithmetic

The L D Lt decomposition in finite precision can be unstable if

the diagonal elements are too small. The L D Lt decomposition on the

matrix A will produce the same incorrect solution on the

computer as we saw in §2.3 for Gaussian elimination without interchanges.

However, here there exists no permutation matrix N such that N A Nt

has a stable L D Lt decomposition. Thus the L D L t decomposition

fails for symmetric indefinite matrices.

2.10 Symmetric Case : Present Situation

If we ignore the symmetry of A and apply elitainption with complete

or partial pivoting to A , then in general A will no longer be sym-

metric after the first step of the elimtintion. We then need - n 2

1 3

storage positions in the computer and we must perform - n multi-
3

plications and n additions. But we also have stability for the
3

.... . ... . . . . ... . . . ..... . .... . .. ...
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L U decomposition. This procedure is presently recommended for the

solution of symmetric indefinite systeas of linear equations (Fox;

p. 80, 185), and thus the symmetry of A is of no aavautage.

2.11 Symnetric Case Our Problem

ii A is symmetric but indefinite, we would like. to find an

algorithm which gives a stable decomposition when applied to N A Nt

where N is a suitable permutation matrix, but which also takes

advantage of the symmetry in order to require only n storage

1 n
positions in the computer and to require only 6 n multiplications

1 3
and -n additions.6

Our algorithm will fulfill all the above requirements wich the

1 3 3
exception that we will need between n and n additions.

4t

I

. . .. =
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Chapter 3 Historical Survey

3.1 Introduction

Various methods have been proposed for symmetr;.c indefinite
f

MaLrices. Most of these methods have been unstable, while the stable

methods have required operation counts of at least n3/3, where an

operation Is defined to be a muItiplication follo-,wed by an addition.

Let us look at some of these methods.

3.2 Direct Methods

Usually direct muthods for symmetric indefinite systems are based

t
on the symmetric form of Gaussian eliminarion, L D L , which is unstdble

in the absence of pivoting.

The L D L method and its 'ariant, the method of congruent trans-

formations (in which we use the largest diagonal elment as the pivot

23at each step (§2.7)) require n storage locations and

operations. But both methods are unstable (§2.7-2.9). These methods

are of value only if It is known in advance that no element of D will

vanish or be small.

The Crout factorization (Hildebrand, pp. 429-435; Householder,

pp. 82-83) is also a modification of L D Lt , symmecric Gaussian 2li-

mination, and thus requires 2 storage locations and n-
2 6

operations, but it is also unstable.

These variants of L D Lt are unstz'ble. Let us consider some

direct methods that are not based on L D Lt

I I I I I I-I I-I-I-II i--I I Is
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I
The escalator method (Householder, pp. 78-79) uses the known

solution of a subsystem as a step in solving the complete system.

The problem lies In finding the solution of the subsystem.

Some headway in this problem was made by Parlett and Reid (1969).

They reduce a symmetric matrix to tridiagonal form by stabilized ele-

mentary congruences and solve the tridiagonal system by Gauss1~n eli-

mination with partial pivoting. They require n storage loca-

tior and n3  operations, and the method is stable.
3

In October, 1965, W. Kahan (in correspondence with R. De Meersmans

and L. Schotsmans) proposed a method for solving symmetric systems based

on Lagrange's theorem on the reduction of quadratic forms to diagonal

forms (§4.3 - 4.4). Kahan proposed the generalization of the idea of

a pivot to include 2x2 submatrices (§4.5).

Then Schotsmans (1965) prepared an algorithm in which one searches

all the principal 2x2 submatrices for the one with largest determinant.
. n2 ~ 1 n3

This algorithm requires - n storage, but between -n and

n operations (§5.4).

3.3 Indirect Methods

The Seidel iterative method (Householder, pp. 48-51, 81) and the

method of relaxation (Householder, pp. 48-51, 81) require - n2 opera-

tions for each cycle. The number of cycles required depends on the

matrix, the starting values, and the needed accuracy, Usually the nu-

ber of cycles exceeds a , so at least n3 operations are required.

: | I . . . .I = I I " II
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The method of steepest descent (Householder, pp. 47-51, 82)

requires - 2 n? operations at each step. Again, usually at least

n steps are required. So the number of operations is at least

32 n

The congruent gradient method, also called the Stiefel-Hestenes

method, is a finite iterative method designed for positive definite

matrices, but it can be used for symmetric matrices (Fox, pp. 208-213;

Householder, pp. 73-78, 82). It requires - 2 n2 operations at each

of n steps. Once again - 2 n3 operations are required. See Reid

(1967) for useful observations on this method.

I
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Chapter 4 ; Diagonal Pivoting

4.1 Preservig Symmetry

In order to L:ave a direct method for symmetric matrices which

will preserve symmetry, we can perform only congruences on the

matrix A , i.e. if we premultiply A by a non-singular matrix X

then we must also postmultiply by Xt

4.2 The L D Lt Decomposition

t
Let us consider the L D L method in greater detail. We con-

vert A to diagonal form by congruences. Let u. consider the first

step of the decomposition:

Let A- If a 0 ,then A L ,Lc  B_ 0 B-CCtla

1C 0 1

where L and In- is the identity matrix of order n -i
C/a I

* 1n-1]

The variant of L D Lt called the method of congruent transforma-

tion. (Westlake,p. 21; De Meeramans and Schotsmans) uses the largest

diagonal element as pivot. This is equivalent to the L D Lt decom-

position of N A Nt , where N is a permutation matrix.

As we saw in §2.8 both methods are unstable for symmetric (inde-

finite) systems.

This instability results from our being unable to bring an off-

diagonal element into the pivotal position. Since we are using only

congruences, we can bring only a diagonal element into the pivotal

I
.. .. ..-.
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position. When some off-diagonal element Ai , j > i * is very large,

we can bring Aji into the (2,1) position by congruences, but never

into the (1,1) position. Thus we cannot take advantage of this

valuable information.

4.3 Orthogonal Reduction to Diagonal Form

t
Any real quadratic form x A x of rank r can be reduced by an

orthogonal transformation to a diagonal form

x 2 + +X x2
11 r r

where Al. ... Ar are the non-zero eigenvalues of A (Mirsky, pp. 362-

363).

If A is an nxn symmetric matrix with det A # 0 , then the

above means that

tAff0A0 t

where A = diag n1,... , n  , the Xi are the etgenvalues of A and

0 is an orthogonal matrix whose i column is an eigenvector corres-

ponding to A1

t
However, this 0 A 0 decomposition involves more work than

Gaussian elimination and requires the use of irrational operations.

For a finite-precision algorithm we would prefer a reduction

involving only rational operations.

4.4 Lagrange's Method of Reduction

In 1759 Lagrange devised a method for reducing a real quadratic

form of rank r by a real non-singular linear transformation to a
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diagonal form

L 2 + + x2
1 X " r r

where C "...,sr are all non-zero (Mirsky, pp. 368-374), and the

number of positive (and negative) squares is invariant.

tThis method corresponds to the L D L decomposition of a sym-

metric matrix A when the L D Lt decomposition exists.

Suppose A 1 1 U ... -A - O , while det A # 0 . Then thennl

t
L D L decomposition for A does not exist. In this case, some

A # 0 for r # s since det A 0
rs

Let us assume A11 - 0 = A22 but A12 0 0 , where A A

(Xl,.. .,x) x A x is a quadratic form in xl,...,x n where

x - _xl, ,xxn ]I

In this case Lagrange proposed the following transformation:

(4.4.1) x - Y + Y x - 2 x- 3Y3 "Xn . Yn

This maps 2 A1 2 xI x2 into 2 A1 2 ( - ). Thus is

transformed into a quadratic form P in Yl....'y where the coeffi-
2 an

cients of y and y2 are non-zero. Then we can proceed with the

decomposition (Mirsky, p. 371-2; Gantmacher, p. 19q).

Let us consider the above transformation in matrix form. Then

T y :z , where

-1 0

(4.4.2) T = and In-2 is the identity matrix of order

0 1n- 2

n-2

i

K!
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t t Ct
Thus x A x y (T t A T) y, and T A[ I a symmetric matrix

with (Tt A T)11 ,(Tt A T)22 0 0

Hence we have avoided the problem of zeros on the diagonal of A

by use of the 2x2 matrix

This procedure is also applicable to complex quadratic forms.

4.5 Kahan's Proposal

Ln 1965 W. Kahan (in correspondence with R. De Meersmans and

L. Schotemans) proposed that Lagrange's method could be made the basis

of a stable method which preserved symmetry.

Kahan adapted Lagrange's method to finite precision by observing

that the use of in (4.4.2) corresponds to the use of a 2x2

submatrix as a pivot in a decomposition by linear transformations and

that a 2x2 could be chosen if the diagonal elements were zero or very

small (§§2.8-2.9).

Suppose we used a 2x2 submatrix P as a pivot. Let us look at

such a decomposition. Let A - , where A - At . det A 0

A is nxn , P is 2x2 , C is (n-2)x2 , and B is (n-2)x(n-2). Then

A a L1  0 B-CP 1 Ct1  L , where L1 - and Ik is

the identity matrix of order k

How do we choose whether to use a lxl or a 2x2 pivot? Can both

lxl and 2x2 pivots be baL?
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4.6 Pivotal Strategy

Kahan considered two pivotal strategies. In the first, one

searches the entire matrix for m c - wax [A' , AjA - A2 1
c i,j,k

f A i , then interchange rows and columns 1 and i and use All

as a lxl pivot. If m IA1a A.k - A2I , then interchange rows and

columns 1 with j and 2 with k , and use [Ajj Ajk] as a 2x2 pivot.ILA k A k

Since we search the entire matrix, this is called a complete

pivoting strategy, In analogy with complete pivoting for Caussian

Elimination. However, the searching here requires between 
3

6

and - n multiplications to find mc for all steps (depending on
3

the number of lxl and 2x2 pivots used). The decomposition itself

requires I n multiplications. Thus this strategy would require
6

between I n 3  and n multiplications to solve A x - b

(§5.4), which is more than for Gaussian elimination. Hence Kahan

rejected this strategy.

Kahan considered a second pivotal strategy in which we scan only

the first column and the main diagonal; this is called a partial pivoting

strategy, in analogy with partial pivoting for Gaussian elimination.
1 n2 1 n2

The searching here only requires between .1 n and - n multi-
4 2

plications.

We take m A.max (A2 1 I A } . However, this partial

pivoting strategy is unstable.

I
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At A 1' , where O<c<<l.

TThus [ would be used asT h e n m p J A I A2 2 0 T h u s 2 1

()21 8 2

a 2x2 pivot, and the reduced matrix AM is I- 1 + g - 1 C)

If c is small enough, then in finite precision arithmetic the

operatio 1 - 2 yields - . + 8 . This can cause highly3 C 3 3 c 3

inaccurate solutions, as in §2.3.

So this partial pivoting strategy is unstable. For these reasons

Kahan rejected this method for use on symmetric systems.

4.7 Parlett's Observation

In 1967 B. Parlett observed that the examples for which the partial

pivoting strategy was unstable were also unequilibrated. A symmetric

matrix A is equilibrated if max IAijI - 1 for each row index i
j

(§7.1). Parlett conjecture that the partial diagonal pivoting strategy

would be stable when applied to equilibrated matrices.
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Chapter 5 The Decompoition for Diagonal Pivoting

5.1 Definitions

Let A be an nxn symnetric non-singular matrix. We want to

reduce A to the "diagonal" form M D Mt by congruences, where D

is a block diagonal matrix, each block being of order 1 or 2, &nd H

is unit lower triangular with H 0 if D 0 0

Let 0 "x IA 1l , " max IAi , and 1 - IAn  22 -Ai ,J ij1 12

5.2 The Decomposition

Let A = [ [ , where C is j x (n-J), B is (n-J) x (n-J),
LC B s

and P is j x j , where j - I or 2.

0 01
if p-l exists, then A - L1 LL where

IB-C 1 t

- L and 'p. In- are the identity matrices of order
p--

j and n-J, respectively. Any element of C P - will be called a

multiplier.

5.3 The lxl Pivot

Suppose P is of order 1. (We shall not make a distinction

between a matrix P of order 1 and its element, which we shall also

call P .)

i
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Let us assume that we have already interchanged rowe and columns

so that 1PI P i i.e. P is the maximum diagonal element.

If P 1  exists (i.e. V 0), the,. let A (n - l) - B - C P-1 Ct

(n-1)
Then (C P-I~ A Ai P and Ai Ai~~+ (C P- i Aj+~

i 1+1 ij i+l,j4-l £ J+l,l
Since I l and V - max JAiji we have the following:

Lemma I: If P is of order 1 and IPI " U1 I 0 then

(1) max I(c p-1 I < Po/W,
i

(ii) max JA (nl) I (1 + Uo/j)o
i,j

Thus a lxl pivot P is useful iff IFP - P' is large relative

to 10 I i.e. if WI/)JO is bounded away from zero.

5.4 The 2x2 Pivot

Suppose P is of order 2 and P-1 exists (i.e. v # 0).

at -1Here the (k-l) row of C P is:

(Akl, Ak2) - A11 A 1 - Ar 1 (AkZ A2 2 - Ak2 A21, Ak2 A,1 - Ak. A2 1 ).

(n2 -I (n-2) -let A(2) B C p Ct Then A -A - (C P C

- B- CAi 2  i+2,J+2 ~ il C1j
(C P) C

£2 2j

Since v - A11 A 2 - A21 1, lAkil and IA.k21 < 0 , and

JA111, 1A22 <111 ' we have the following:

111 _ 221 _ _--



Lama 2: If P is of order 2 and Idet PI " V 0 , then

(1) max I (C P-1) I o 11 o + ii1)Iv

(ii) max < (1 + 2o (jj + P)Iv) 'o
iJ

Thus a 2x2 pivot is useful iff we can bound v away from zero.

In particular from §5.3, we need to have v bounded away from zero

whenever p1/p0 is near zero.

(Note that the use of the standard norm bound would give too crude

an analysis for Lemmas I and 2.)

5.5 Bounding V

We can easily bound v from above, since v - IA, A2 2 - A:,2I.<

A2  4A 1 1 1 1A2  V2 + M2. Thus we have:2112~ + 222

Lea-3: IdetPI V<_p2 + V2

- 0 1

This upper bound is sharp for

II VO 0

l0

-L 0 0 0 -

ow\n o

But, as we saw in §5.4, we need a lowez bound on V which bounds

I

i
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v away from zero when V 1 /M 0 s small. Clearly, such a lower bound

does not exist without interchanges.

Consider A - 0 0 1 with P =10 001

We shall exhibit three different pivotal strategies in §6.1, §6.4,

and §8.1, which provide us with the necessary interchanges so that we

have a 2x2 pivot P with:

Idet PI (§6.2, §6.5, §8.2).

Assuming this lower bound, we have:

Lenma 4: If Idet PI _ v> I >0 then

(i) max I(C P-1)ikl < P 0/(PO - Ul ) for k-l,2,
i,k

(ii) ax I(n-2 )I.+-
(ii) MAX A'( 2v10/(J 0

ij 00  0 1

The lower bound on V > 0 is sharp for

l1  PO 0

L0 \ K_

A-

0
L 0 1-

Thus we have a good bound on element grovth in the reduced matrix,

since if Vj/ O is small then W 1 . We shall see in
1 0 1 0

Chapter 10-12 that stability follows from this.
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5.6 The Reduced Matrices
On Av(n .(n) , (n)

Define A -A, )0 10 P 1 v "y1

Let A(k) be the reduced matrix of order k . Let

1 a (k) . max (k), 1 (k) . max IA(k) 1. and o(k ) . JA (k) A2(k) A (k)21
0J jj 1' 1 1 22 2

All considerations in §§5.2-5.5 hold for A(k)

5.7 Criterion for Choosing a ixl or 2x2 Pivot

We must find a proper criterion for deciding whether we shall use

a lxl or 2x2 pivot.

In Chapter 10 we shall show that the elements of the error matrix

are bounded in proportion to the elements in the reduced matrices. For

stability we must ensure that the elements in the reduced matrices do

not become too large.

If we made our criterion to be the minimization of the number of

multiplications (additions), then we would want a lxl (2x2) pivot at

each step. But this would be unstable.

Instead, let us aim to minimize the element growth that can take

place in the transformation from one reduced matrix to the next. For

further temarks see §12.6.

Let F (k) be the growth factor permitted by choosing a jxj

pivot for A(k) , where J-1 or 2.

If the hypothesis of Lemma 4 holds (i.e. v(k) >() 2  k)2

for all A~k) ), then by Lmas 1 and 4:
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F 1 + jOIl F=i + 21F-P P
(k) (k). (k)

F has a good bound if p 1 is not too small; while

(k) (k) (k)
F2 has a good bound if p IPO is not too large. Thus we are

led to the following:

Definition: For 0 < a < 1 , let S be the following strategy:

for each reduced matrix A~k) , choose a lxi pivot iff

P (k) (k) >a (and a 2x2 pivot otherwise).

With S we have F(k) I < + 1a and F 2k) 1+2/(l - for

all A(k)

But at any stage the choice of a 2x2 pivot carries us further

towards the complete reduction than does the choice of a lxl pivot.

Since the growth factors from reduced matrix to reduced matrix are

multiplicative, it is natural to compare the square of the growth fac-

tor F(k ) permitted by choosing a lxl pivot for A(k ) with the growth

factor F(k) for a 2x2 pivot.
2

Thus the problem is to find min max ((1 + I/a) 2, 1 + 2/(1 - c)}

Theorem: min max (( + 1/a) 2 , I + 2/(1 - a)) - (9 + 17)18
O<a<1

and is achieved by a -a 0 (1 + r17)/8

Proof: The equation (1 + I/a) 2 - 1 + 2/(1 - a) reduces to a

quadratic with roots (1 +±17)/8 . Since the left side of the equation

L ~.
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is monotone decreasing, the right side is monotone increasing, and

a > 0 , the minimum is given by a 0 = (1 + ,r7)/8 q.e.d.

We immediately obtain the following bounds on multipliers and on

elements in the reduced matrices under strategy S . Let m be any

multiplier.

(k)Corollary 2: Under strategy S i , if for all A

K (k) >(k)2  ( 11 k)2V _ U then:

Ia for a lxl pivot

<mi I

1 /(1 - a) for a 2x2 pivot

For a a0 u (1 + /17)/8

(7i - 1)/2 < 1.562 for a lxl pivot

T + 7)/4 < 2.781 for a 2x2 pivot

Corollary 3: Under strategy S. with a - a0 , if

(k) >(k)2 _(k)2  AkO >III ) ) forall A(k) ,thenfor l<i<n

P M ) < P0[(9 + /J)/ 2 ] ( n - t )I2 1 U0 ( 2 , 5 7 )n - i

In Chapters 11-12 we will give a much better bound on the elements

in the reduced matrices.

The strategy S allows us to proceed in the following order:
a

(1) calculate V(k) and pk

(k) (k)
(2) if Pi a0 ji0  then we use a lxl rpivot;

(3) otherwise we find a 2x2 by some strategy.

Thus we earch for a 2x2 for A(k) iff (k1 1 a 0(k)
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Chapter 6 : The Complete and Partial Pivoting Strategies

6.1 Complete Pivoting

As we saw in Chapter 4, the partial pivoting strategy can be

unstable when uNed on unequilibrated matric:s. The trouble lies in

the fact that we do not have a lower bound on the 2x2 principal minors

which bounds them away from zero when the diagonal elements are small

(§5.5).

Let us therefore consider a complete pivoting strategy ("complete"

in the sense that we search over all the principal 2x2 minors, cf. §4.6).

By interchanging rows and the corresponding columns it is possible

to bring any diagonal element into the (1,1) position or any principal

2x2 submatrix into the leading 2x2 position.

Let Vc max JIAi - A 21

i ,jii

The complete strategy involves:

(1) finding il max JAl I , 0 - max JAi I
i i,j

(2) choosing a Ixl or 2x2 pivot according to S §5.7);

(3) for a lxl, interchanging so that IPI = l (§5.3);
(4) for a 2x2, finding vc I. and interchanging so that Idet PI V c

( h wor b 2x2, firdachc rdc

(§5.4).

This would be repeated for each reduced matrix.
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6.2 Bounding V

However, the result of all this work is that we do obtain a lower

bound for vc in trnw of 0 and pI"

K Theorem 1: V < 02 + 1"

Proof: The upper bound follows from Lemma 3 of §5.5. Let

IA, . Then v max IAi - AlI > IA A -A 2 Iw

0 sC rrso rsI,~
2  A A > 2 2  since V = A2  and
0 rr as 20 01 0 rs

p I =max JA iii q.e.d.
1

Thus Lemma 4 in §5.5 holds for v when pl < 1i According to

S ,we choose a Ixl pivot for the reduced matrix A( k ) ifC&

P > CL0 P where o 0 = (I + 11i7)18.

In Chapters 10-12 we shall see that stability of this complete

pivoting strategy follows.

6.3 Operation Count for Complete Pivoting

Unfortunately, the operation count here is much larger than we

desire.

The calculation of V(k ) requires k(k-1) multiplications and

additions. Let p be the number of lxl pivots used (so q - (n - p)/2

pivots of order 2 are used). Let P) denote summation over those

indices k , 1 < k < n , for which A(k) uses a pivot of order j
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The searching for all the V (k) requires:c

(6.3.1) 1(') k(k - 1) + 1(2) k(k - 1) multiplications and additions.

n 1 .lna
Now (6.3.1) < I k(k - 1) - n(n + 1)(n - 4) n3 with

r-1 n?2

equality iff p - n , while (6.3.1) >J 2J(2j - 1) T n(n + 2)(2n - 1)
i-I

! n3 with equality iff p - 0 (i.e. q - n/2).6

From Chapter 9 we see that the rest of the work for solving A x -b

would require . n3 multiplications, and between I n3  and6 4

in additions.

Thus the complete diagonal pivoting strategy requires between

n 3  and n3 multiplications, and between _ n3 and
l2 12 a

additions. (To be exact, n3 + 3 1 p3 multiplications and
3 I

1-i +.1 p additions are required, where p is the number of lxi

pivots used.)

Examples: If A is nxn and positive definite, then p - n

0 1
0

If Ais nxn with ni even, then p -0
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6.4 Partial Pivoting for Equilibrated Matrices

As we saw in §§6.2-6.3 the complete pivoting strategy is stable,

but it involves more work that we are willing to perform, while in

Chapter 3 we saw that a partial pivoting strategy is unstable for

j unequilibrated matrices.

We shall now show that a partial pivoting strategy is stable

when applied to equilibrated matrices (with equilibrated reduced

matrices).

Let A be equilibrated, i.e. let max AiI = 0 for every ij

where V > 0 (usually we normalize by taking U0  i ).

Let v - max IAll A -A2

The partial strategy involves:

(1) equilibrating A (thus we know 0

(2) finding p1  and choosing a lxl or 2x2 according to S (§5.7);

(3) for a lxl, interchanging so that IPI Ul 05.3);

(4) for a 2x2, finding v , and interchanging so that Idet P1 Vp

(§5.4).

6.5 bounding V

Now let us find a lower bound for V
p

Theorem 2: If A is equilibrated (max lAijI -= for every i

2_ 2<% 2 24
then V 10  < - <i- + ]J"0 1 p- 0 1



34

Proof.: The upper bound follows from Lemma 3 of §5.5 By

equilibration, either (1) IAI1- U0 , or (ii) there exists integer

k > 2 with IAklj - p0 . If (i), then p0 1-1 and, trivially,

p _o 0_i - 0 . If (ii), then V > JAll Akk- i1'

p? -A: P2 _O- q.ced.

Thus, Lemma 4 in §5.5 holds for v if .
<  0 ' According to

S , we choose a lxl pivot for the equilibrated reduced matrix A(k)
ci

of rde k ff (k) (k) -1 /~/
of order k ifk ,where - +

Also, stability of the partial pivoting strategy for equilibrated

matrices follows from Chapters 10-12.

For A A (n ) , only 2(n - 1) multiplications and additions are

(n) (k)required to calculate v )  Thus the calculation of v k  for allP p

1 2
k requires between 2 n and n(n - 1) multiplications, compared

nd ~ fcrallth

with between 6 3 for all the V(k) in (6.3.1).

6.6 Citticism of the Partial Pivoting Strategy

The drawback to this method and the crite-.ion which we have found

for the pivoting strategy is that the matrix mus. be equilibrated at

the beginning and then each reduced matrix should be equilibrated.

But an algorithm for equilibrating symmetric matrices has never been

exhibited, i.e., for an arbitrary matrix A , "Pe seek diagonal matriceb

D 1 , D2  such that D A D 2  is equilibrated, .nd if A is symmetric,
21 2

we need D - D2 in order to preserve symmetry.

1 . . . . . .. . . . . . .. . ..2. . . . . . .
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We resolve the above predicament by two fundamentally different

approaches. In Chapter 7 we exhibit an algorithm which can equili-

brate any symetric matrix in a very simple way. In §§6.1-6.3 we

showed that complete diagonal pivoting avoids the problem of equili-

bration and is stable, although the number of multiplications and

additions required is more than we desire. But in Chapter 8 we shdll

exhibit a new version of diagonal pivoting which is applicable to

unequilibrated matrices; we call this unequilibrated diagonal pivoting.

£his method will show that equilibration (in Wilkinson's sense) is

unnecessary for this strategy and this is the algorithm that we

recommend.
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Chapter 7 : Equilibration of Symetric Matrices

7.1 Introduction

Wilkinson (1961) recommends that a matrix be equilibrated before

applying any algorithm for solving a system of linear equations. A

matrix A is said to be equilibrated if all its rows and columns have

the same length in some norm. Wilkinson's rounding error analysis for

Gaussian elimination (Wilkinson, 1961) gives the most effective resultN

when the matrix is equtI"brated, since a small perturbation of one row

(or column) Is then of the same magnitude as that of any other row

(or column).

7.2 Equilibration of General Matricee

In finite precision we modify the definition of equilibration.

(In this chapter we shall confine ourselves to the norm

10. - maxixil .)
i

A matrix A is row equilibrated if, for each row index i

-I 0 < max ,AijI < WO . where a is the number base of the floating

point system. A matrix A is column equilibrated If, for each columt,

index j PO< max JA1jI <1O

A matrix A is equilibrated if it is both row and column equili-

brated.

Usually we normalize by choosing pO0 - 1 . We shall assume

PO = 1 in this chapter.



The use of 8permits a matrix to be equilibrated by changes of
exponent only.

I In order to row (column)-equilibrace A we seek a diagonal matrix

nb~ (D) such that DA (A D ) is row (column)-equilibrated. To
1 2

is equilibrated. However, there is no unique equibrated form of a

matrix for this norm (Forsythe and Moler, p. 45). The various equili-

brated forms may differ greatly in their desirability for use in

Gaussian elimination, since the various equilibrations cause different

choices of the pivots (some are good choices, others are bad).

F em ixi;) the equilibration is uniqueFor the one-norm (Ix0I

but the convergence of the algorithm is slow (Sinkhorn (1964), (1967);

Siktkhorn and Knopp).

7,3 Difficulties Vith S etric Matrices

-2If A is sbymmeic, then we allow 1- instead of V0

as the lower bound it the definitions of row (and column)-equilibrated.

If A is syametric, then A is row equilibrated iff A is column

equilibrated 1ff A is equilibrated.

In order to equilibrate a symmetric matrix and still preserve the

symmetry we seek a diagonal matrix D such that D A D is equilibrat _d.

Let A 1 2 - diag {1/2, D) D - diag {i, V/2} and

Le A dg L 14/2] 2

D - diag {v' /4, /2 1



38

Then 1)1 A D 1  /4 1 D2 A D2  18 ,and
I_ 1 2 1

D3 A D3 -F are all equilibrated.

Criteria for choosing pivots are based on their size. It is an

open problem whether all equilibrated forms of a symmetric matrix give

satisfactory pivots as judged by the usual criteria.

There is no known algorithm for the symmetric case.

7.4 The Obvious Attempt

Let us cc sider D A D . Let D - diag {dl,...,d n I and A be

an nxn symmetric matrix. Then (DAD)ij - d i d A . Let us assume

that no row of A is all zero.

The method which seems the morc obvious is to equilibrated one

row at a time: Let D1  diag{dl,1,...,).

C Aij for 3,4 ' I

Then (D AD )ij - dI Aij for i 1, J0l
2 or J'l, i#1

I All for ijml

So choose d 1 = max{ 'IA 11 , max IA ij )S2<_j <n

Now DIAD1  is symmetric andlmax -(DIADl i 1 . However,

when we tr'/ -o equilibrate the second row we usually destroy the equi-

libration of the fitat row.
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This method is related to the Sinkhorn algorithm which equilibra-
n

tea in the one-norm, 1x iii 1x1  , rather than the -norm,

|01.o -max Ix1 I , which we are using (Sinkhorn (1964), (1967); Sinkhorn
I

and Knopp; Marcus and Newman).

7.5 Equilibration of Lower Triangular and Symmetric Matrices

The problem with the method in §7.4 is that we try to do too much

at each step.

Let us consider A At T + A + Tt ,where A isadiagonal

matrix and T is strictly lower triangular (i.e. T - 0 if J > i ).

Lemma 1: If T + A is row-equilibrated, then A is equilibrated.

Proof: Let us consider the ith row of A . Since T + A is row-

equilibrated, max Aij I = 1 . But IAjij < I for J i , since

ITijI < 1 and Aji = Tij for j > i. Hence max IA ij ik

each i . q.e.d.

Now we shall show hcw to construct D such that D(T + A)D is

row-equilibrated if T + A has no all zero row. In this case, by

Lemma 1, D A D is equil!.b:'-d.

In fact, it is eas- uilibrate the lower triangular part

of a symmetrJc matrix and s.. preserve symmetry.

Lemne 2: Let B be an nxn lower triangular matrix (i.e. B - 0

for I > i ) with no all-zero row. For 1 < i < n , let

di I max { - max Id Bi }. Then D B D is row equili-
i 1il l i< i-l I -j

brated, where D = diag dI ....d} n



40

Proof: By induction. Let d 1 , and B 11 0

by hypothesis. So Id2 BI " 1

Assume that dl,...,dl_ 1 > 0 have been chosen so that

max Idj dk BJki - 1 for I < J < i-1

l<k~j

Let d i max { , l<1max Idj BiI I By hypothesis,
1:3. <~

di > 0 . Then max Idi d ijI .
j i J

Hence the di exist for 1 < i < n by induction, Let

D - diag {d , . . ,d n I . Then D B D is row-equilibrated. q.e.d.

7.6 The Algorithm for Null Rows in the Lower Triangle

But what do we do if A 1 0 or if, for some i , Aij =0

for 1 < J < i ?

Let us form D as In §7.5 with the exception that we set

di  1 1 if Aij = 0 for I < j < i .

Thenfor all i,j : l(D A D) iI < 1

D A D fails to be equilibrated only if for some i

(a) Aij = 0 for 1< j < i , or

(b) max Idj AijI < 1
j >i

If the ith row of A is not null, then the maximum in (b) is

positive. For such i, define ei by e-l = max Id A I ; for all

other i , let ei =1. Let E =diag {el,...,e n
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Theorem: Let A be an nxn symmetric matrix with no null row.

Let D and E be constructed as above. Let A - D E . Then A is

a diagonal matrix, and 6 A A is equilibrated.

Proof: If ei A I then the maximal magnitude of row i in D A D

is raised to I by forming E D A D E , while in all other rows the ith

element is increased in magnitude but not in excess of 1

The theorem follows from §7.5. q.e.d.

7.7 Summary of Equilibration of Symmetric Matrices

If A is an nxn symmetric matrix with no null row, we can find

a diagonal matrix D (in two sweeps, although only n steps) such

that D A D is equilibrated (in the u-norm, |xi. = max lxii ).
i

We can express D by the following algorithm: For i = l(l)n

- max { /1iV, max 16 Ai ) if A 0 for_ l<_ii i jAij Aij

6ii = some j ,1< J

1 if Aij - 0 for I < j <i.

Then, for i - l(l)n:

if A #0 for some j, < J < i

i

max i A ji I if Aij -0 fur 1<j< i
i+l <j<nI

Let D = diag (dl...,d n I . Then D A D is equilibrated.

The work required to equilibrate an nxn symmetric matrix with no

all zero row is:

n square roots

n(n+l) multiplications

(n-I)2 idul tions
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In practice the algorithm can be expressed in a very simple

manner in Algol (see kppendix B) and can be performed in only n steps.

(We would actually set fi " 0 if A 0 for 1 < j < 1 and

then search for max 16j AjI iff f - 0 )
i+l J<n ±

7.8 The Algorithm for Exponent Adjustment

In practice, we actually only require that 6-2 < max JAij I <

for every i instead of max IAij I - 1 for every i so that we need
lj _n

only adjust the exponents of the elements of A

Then our algorithm takes the following form:

Let Aij = Yij B( j  for j i , where -1 < Iij I <1, unless

AJ4 = 0 when we take 0 =  a
iiJ ij

Let A where C4_ <1 , unless Al1  0

when we take y i i 0 ii

0 if Aij - 0 for 1 < J i

For i -l(ln set 6

a x{max (a - 6 )} otherwise
2X p i1 ' ma ij J

i if 61 #0

For i = l(1)n: set d i

max (aj - 6j) if 6, = 0
li <n i

-.
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This will give S-2 <max 16 d + A i < 1 for every ±

(This equilibration can be performed very rapidly in mach rne

language.)
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Chapter 8 Unequilibrated Diagonal Pivoting

8.1 Maximal Off-diagonal Element

In order to obtain a lower bound of W- 2_0 for v in Theorem
0p

1 in §6.3, we needed the fact that, due to equilibration, there existed

an element of maximal absolute value in the first column. However, if

P1 < P0 I then there exist integers i,j with i > j , such that

jA11 i WO * We need only bring the element A up to the (2,1)

position and then we will have a 2x2 pivot with a maximal off-diagonal

element. We shall call this variation unequilibrated diagonal pivoting.

Let U 0 . max JAiji = IArsI , where r,s are the least such inte-

i,j

gers. Let pI = max lA il•
i

Let V =A A - A'

b rr ss rs

This strategy involves:

(I) finding u1 and the least integer k with IAkkI [1

(2) finding p0  and the least integers r,s with IA rl = PO

(3) choosing a lxl or 2x2 pivot according to S (§5.7);

(4) for a 1xl, interchanging rows and columns I with k so that

IvI = 1P (§5.3);

(5) for a 2x2, interchanging rows and columns I with r and 2 with s

so that Idet PI = Vb and IA211 - o0 (§5.4).

This procedure is repeated for each reduced matrix.
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Note that calculating Vb requires only 2 multiplications instead

of n(n-l) for v and 2(n-l) for vC p

Clearly from the definitions of vb, V, and V and from Lemma

3 of §5.5, we have:

Lemma 1: v < V ' V < 2 + 2
- p - c - 0 1"

8.2 Bounding vb

Let us now bound vb from. below. From §8.1, we may assume
- A 2 I and - 0

b  IA11 A22 - A21 2 A2  00

P2 _P2 < 1 2 + WTheorem 1: If IA21 1 ' O - then 0 -1 < -- < 0 i

Proof: The upper bound follows from Lemma 1.

Since IA2 = 0 IA A - A2 11 -0 -A A > 2 2
211 -0 ' b 1 22 21 0 1 22 -0 1

q°e. .

Here, as in §6.2 and §6.5, symmetry was used to get the lower bound

on Vb * By symmetry, if PO= IA211 then JA12 1 ' 00

If A were not symmetric, then p0 = 1A21 1 does not imply that

IA12 1 - P0  (in fact we could have A12 ' 0). Thus no such non-negative

lower bound on the determinant of 2x2 submatrices can exist for non-

symmetric matrices.

Thus Theorem I impltes that Lemma 4 in 55.5 holds for vb if

WI < PO * According to Sa (§5.7), we would choose a lxi pivot for the
reduced matrix A of order k iff p k)> W where

t0 - (l + T7)/8.

in Chapters 10-12, we shall see that stability of this strategy

(for unequilibrated matrices) follows from the above.
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8.3 Comments on this Strategy

From §8.1, we see that we need do no searching over the 2x2 prin-

cipal minors, but we merely choose that principal minor with maximal

off--diagonal element. In Chapter 9 we shall see that this searching
O(1n3 and . In

for the W k) requires between - I-- n3 additions

and no multiplications.

We used the terms "complete" and "partial" strategies in Chapter

4 to distinguish between searching over all the 2x2 principal minors

and over the 2x2 principal minors with off-diagonal element in the

first column.

In analogy with Gaussian elimination with complete pivoting, we

would like to call our strategy in §8.1 a complete pivoting strategy

(k)since we search all of A for its maximal element, but we do not

wish to cause confusion with the use of the word "complete" in Chapter

4 where it meant searching all the 2x2 principal minors.

Now, in analogy with Gaussian elimination with partial pivoting,

we ask if there could be a partial strategy where we search only the

(k)
first column of A for its maximal element.

l
Such a partial s=trategy requires at most only - n (n-i) addi-

2

tions to calculate the maximal element in the first column of all the

reduced matrices. If such a partial strategy were table, then this

13 3lstrategy would require only a multiplictions and 6

additions to solve A x b a = At det A 0

• , de A #0
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However, any such partial strategy is unstable for unequilibrated

matrices, as the following example shows:

A - 1 1

where 0":aLx<1 and O<cE<<I

8.4 A Partial Strategy for Equilibrated Reduced Matrices

(n (k)Clearly, if A - A and each of its reduced matrices A is
A(k) (k)

equilibrated (i.e. max IJA I = Pk for each i ), then the partial
ij

strategy, whereby we choose the 2x2 principal submatrix whose off-

diagoral element is the maximal element in the first column of A(k)

is stable since, by the equilibration, such a maximal element in the

first column of A(k) is also a maximal element of A(k)

But we would have to equilibrate A at the start, and then equi-

librate each reduced matrix A(k)

Let us now consider such a partial strategy when A is equilibrated,

but we do not equilibrate the reduced matrices.

8.5 A Partial Strategy for Uneguilibrated Reduced Matric,=s

Let A be an nxn symmetric equilibrated non-singular matrix with

max %j - p0 for each i . We shall now consider the partial strategy
j

defined in §§8.3-8.4, but we shall not equilibrate the reduced matriceb

A(k) for k < n.
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Let A( k ) be the reduced matrix of order k ; let A ( n )  A

Let -) max ( (We shall not actually calculate
ij 0

(k) .(k) (k),

Let)I A) say. We shall assume we have

IIinterchanged rows and columns so that A k)I _ (k )  Then let

X (k) . a JA (k), . So X(k) Ij(k) ,wie (n) (in) .1

(k) (k)
We shall use a I1 pivot iff Pl > a X Let m be any

multiplier (§5.1).

(k) > a X W then we use A as a lxl pivot, and
I 1 -- 1

Iml < x(k)/P(k) < i/a , while max IJA(k-l)', 11(k) + X(k)/a <
I(k (j +j i/- 0

(k) 

()
If 11(k) < a X(k) then we Interchange so that JA2kI -, ) X -

(k) - I) . So v(k) >k() 22 (k) 2) X( k) '

Then Il (k) (p(k) (k) (k)
Then Im X (P + )/V and

max JA (k-2)1 <(k) + 2X (k)' (P(k) + W(k) )V(k) < (I + 2/(l1 (k)

As in §5.7 we would choose a - a0 - (l + v'Tl . Then

wax IA (kI < (2.57)n-
k . for each A(k)

i

But we cannot obtain a bound on A(k) as in Chapters 11-12 since

we cannot express bounds on v (k) in terms of (k)
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We leave the significance of this method (§8.5) in relation to

the method in §§8.1-8.4 as an open question.



Chapter 9 Operation Count

9.1 Solution by Diagonal Pivoting

We now consider the amount of work required to solve A X - B

by the (unequilibrated) diagonal pivoting method (Chapter 8), where

A is an nxn non-singular symmetric matrix and B is an nxk matrix,

i.e. there are k right hand sides.

In matrix notation, we perform the following steps:

(i) A= M D t t

-1
(2) C =M B.

(3) Y: D C

(4) X= M- t Y.

-t -it
Here M means (M )

Let p be the number of .xl pivots used. So q = -p)

pivots of order 2 are used. Let A be the reduced matrix of order i

Definition:

{l if A(i) uses a lxi pivot

pivot [i] - 2 if AW uses a 2x2 pivot

L if A(i+ l) uses a 2x2 pivot

We shall use the term Mults (Adds) to mean the number of multi-

plications (additions). We shall count a comparison as an addition.

We shall use Z (J ) to denote summation over those indices i

1 < i < n , such that pivot[i] = J1

9.2 Summary of the Work Required

Stcps (1), (2), (3), (4) In 99.1 req~tire;
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1  3  1 2 i3Mults - + (k + )n + (- -2k)n + (k + 3/2)p + X(2) U

1 3  2  4 22 3n + (k + ) n+ (5- 2k)n+ -(2k 7)2 n
-6 4~ 3 l

Adds n3 + (k + 5/8)nW + (2 2k)n + 3/8)p + i (1-1)
4 4 4

13 1
~-n4 +-i=p3

-3
<1n3 + (k + -) n' (k_- _)n l n3

For k 1 1 (i.e. one right hand side), let us compare the work

required for the diagonal pivoting method (applicable to all non-singular

symmetric matrices) with that required for Cholesky's method (applicable

only to positive-definite matrices).

Cholesky Diagonal Pivoting

Exact Lower Bound Upper Bound

Mults n 3 + n 3 n2 n 3 9+ n2  2 n +
6 2 3 6 2 3 6 4 3 12

1 3 2 7 1 3 + A3 2 5 1 3 3 2 5
Adds n + - n n -n n n + - n

Root
Recipro- n 0 0
cals

Since the time required for a computer to perform a multiplication

1i 3
is much longer than for an addition, the requirement of - n multi-

6

plications and between - 3  and n3  additions is very satisfac-
4 3

tory for symmetric indefinite matrices.

K -
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If A is positive definite, then Cholesky's method is preferable

to the diagonal pivoting method. See also Appendix A (SA.l).

9.3 Forming (k) A-MD M t

t
First we decompose A into A - M D M

Let us consider the reduced matrix AM of order i

The following chart shows our course of action.

find 1() Adds- i- I

find Add 1-- il

P MH LL ulLs, Adds-1

yes no

use lxi use 2x2

interchange inechange

I I ~Mults-2
Mut -:calculate calculate det:t Ads -2I

multipliers

Mults, Ads 'omA(-)calculate { ults -6(-)
Adds(1 A) multipliers Adds - 2(1-2)

2 (11

form A (1i-2) Mults, Adds

j i-ii :- 1-2
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Thus for A(1)

Mults A. i(i+l) and Adds 1 if pivoc[i] 1 1
2

2 3
Mults - 12 - 3i - 7 and Adds - (i-l)(j i+l) if pivotti] - 2

1

Recall that there are p lxl pivots and q - (n-p) 2x2 pivots.

For step (1):
+ 1(2) i

Mults - Tjl) Ti ([+1) + ( 4i + 31 - 7)

(I i ( ++ (i+l) + - (i-l)i + 31 -7

t +) ) (31- 7),

1 n3 I2 19 7 1(2)
(9.3.1) n + - +Zp+3

6 6- 2

13 12 1_ n + n + 1

Adds " i 2 + (2) (ii)(3 +)

S(i){43 i2 + 1) + ( 2 - i)1 +

y(2) I 2 + 1 1 + _ (1_1)2 + ( - 5
4 2 4 2 4)

n /i)1" ( + ( )- n-p) + I(-2

1 2) 8

1 3 5 2 1 5 1 t4l)

(9.3.2) n 3 + -n 2 + .p + - z 1 (1-2)

-4 8 8448 n 5n

Now let us bound 3 [42) i and 1 1 (1-2) from above.

44
[(2)i < p+2J = -2 ) + (n-p) and
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< n 1 p2 5

(1) i (i-2) < i (1-2) - p{n 2 -(p+l)n + " p2 + ! P
i-n-p+l

So we have the following upper bounds for (1):

(93.3) Mults <_ + - n 2 2 p

-6 4 3 4~ 2
1 n3 + 2 p

L (I + 1
2  i(p2+P+l )n + I1 -Z+ 5

(9.3.4) Adds <1 3 n 1 p +  ) n 4 8 +T1 p.

9.4 Solving (2). (3. (4)

-1
For (2) C M 1 B :

Multe, Adds - (1- n+!-p) k

(Note that M a 0 if pivot [i] - 2.)

-1
For (3) Y D C :

Mults 3n - 2p , Adds - n - p
-t

For (4) X -M Y I

1n2 1
Mults, Adds n 2 - n + p) k

9.5 Total Work Required

Thus steps (1), (2), (3), (4) together require:
1 32+3 

1(2)

Mults T1 + (k +1 + 
1 -2k) n + (k + p + 3 (.

6 + ) 4P

)1 3 5 2 4 7 3 2
Mults < n- + (k+ 1) + ( - 2k) n + (k-) p p

1 n 1 n2 1
Mults >6 + (k + )n + (L- 2k) n.

I 3 5n 3 2k k 3 i(I

Adds = n + (k + g) n2 + 2k) n k ) p + 3 l i (1-2)

Adds( < + (k + ) 1+ ( -kn+ 1P3 1 1 P2+

13  5 2  3 7

Adds > 1- + (k + ) 2 + - 2k) n.
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9.6 Uper Bound on Mults

We would like a minimal upper bound on Mults that is independent

of p , where 0 < p n

Let f(x) - (k - x- By elementary calculus,

f(P) < 
f ( " T2 (2k- 7) Thus ults < n + (k + 

4 . n 9zn 2 25

(-2k) n + -- (2k-7)
2  n g + n - n + j- (wnen k i)

9.7 Uer Bound on Adds

Now we would also like a minimal upper bound 
on Adds that is inde-

peadent of p

Let g(x x +( z_ x2 + (_ n - n + k- ) x.
i ~12 Ltgx - -- 4 4 4 12

Since g'(x) > 0 on 10,n] we have

(p) n n (k - n Thus

12 8 k 1 2 )n.Tu

Adds < 3 n + (k + )n - (k - -) n

1 3 32
n + - n2- 2 n (where k l)

2j
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Chapter 10 : Error Analysis for Diagonal Pivoting

10.1 Introduction

Let us attempt to solve A x - b by the diagonal pivoting

method. If xc  is the solution we obtain from the computer, we may

consider x as Lhe exact solution of the system (A + E) z - b

As in §2.5, we are interested in showing that the elements of E are

small in comparison to the corresponding elements of A (Wilkinson,

1960, 1961, 1963, 19b5). Such an analysis of E is called a back-

ward error analysis.

10.2 The Occurrences of Error

Suppose that we could perfocm the diagonal pivoting method in

exact arithmetic. In order to solve A x - b , we perform the fol-

lowing steps (see §9.1):

(1) A - M D Mt  (the decomposition)

(2) c - M' b (the new right hand side)

(3) y - D c (solve the lxl and 2x2 systems)

(4) x - Mt y (recover the solution)

However, in finite precision arithmetic, we have error at each

step. Instead of decomposing A into H D Mt , we obtain M and D

such that M D Mt. A + F. Instead of calculating M -] b , D- c ,

Mt y , we actually obtain c - (M + M 1) b , y - (D + 6) 1 C ,

x - (M + M2 ) - t y for some perturbations Ml , 6 D , M2 respectively.

Thus we actually perform:
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(1) A + F MDMt

(2) cm (M + M) b

(3) y (D + 6 D) 1 c

(4) x= (M + M 2)
- t

10.3 The Error Matrix E

Thus we have b - (M+M) c (M + M)(D + 6 D) y

- (M + M1)(D + 6 D)(M + M 2 )t x - (M D Mt + M1 (D + 6 D)(M + M2)t

+ H [6 D (M + M + D Mt 1) x . but M D Mt a A + F , while

(A + E) x - b . Henc,

E - F + M1 (D + 6 D)(M + M )t + M [6 D(M + M)t + D M

if we can bound the elements of F , M , D , M # M2  and 6 D
1'2'

then we can bound the elements of E . We shall see that most of the

error lies in F , in other words, most of the error occurs when

obtaining the decomposition H 1 MD of A

10.4 Notation

In the following sections, the symbol E,n will stand for any

numbers with ICI < 2-  in < (1.06) 2-  , where t iG the num-

ber of binary digits in the computer. Each occurrence of C or n

in an equation should be indexed, but we shall suppress these indices

for the sake of clarity.

and shall denote the summation over those indices k

i < k < n , with pivotik] = 1 and 2 respectively.
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We shall write g(t) - 0 (2- ) if lim 2t g(t) is finite.

10.5 Summary of ihe Error Analysis

In the following sections we shall show:

(10.5.1) IFjI 2t  
' 11 + 3.01/a] ( k) + [I + l1.02/(l-a)] (k)

for I , and F - Ft

(10.5.2) IEi jI s IFij + £ , where £ < 2- t  ma) . (k) 2 x
k

max (1/a
2, 1/(-,1l

2 ))

Also, for a - (a0 , we shall show:

(10.5.3) IF 1 2' 1 5.71 (k) + 31.6 (k) for i J

Ijj j 0 L 0 o 1

(10.5.4) 1E < 2-t max p (k) (23.54)n
k 0

n

where I I is the one-norm: 1E1 = max 1I
j i=1

In Chapters 11 and 12, we shall show for a = a0 :

(10.5.5) max IFijI < (15.8)n 2-
t rn f(n) 110 (3.07) nO 4 4 6

iJ

(10.5.6) IF < (15.8)n 2 2- t n f(n) 1O (3.07) n0.446

(10.5.7) NEI < (23.54)n
2 2- t n f(n) V'0 (3.07)n

0 .446

For Gaussian elimination with complete pivoting (see §2.5):

(10.5.8) @0< (2.01)n 2 2- t ,n f(n) 11O I where L U - A + F .

For further remarks, see §10.12 and §10.16.
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10.6 The Decomposition for the Reduced Matrix A(r)

Let A(r) be the reduced matrix of order r * 1 < r < n . Let

a * pivotir] (see §9.1). Thus a 1 1 or 2

Let A(r ) be the matrix resulting from deleting the first aB

rows and columns from A(r)

p(r) C(r) t

Lez A (r )  where P (r) is axe

c(r) Air) ]s 8

C (r) is (r-s)xs . We shall use P(r) as the sxs pivot.
* s s

Let M(r) be the (r-s)xs matrix resulting from calculating

C(r) (P nr) in finite precision. Let G be the (r-s)xsa 9
) ~(r(r)

error matrix : (r) = M(r) _ c(r) P(r)-i Let Ar) be the
S S S S

reduced matrix of order r-s resulting from calculating A (r) - M (r ) C Wt

(r-s)
in finite precision. Let G be the (r-s)×(r-s) error matrix

C ( r
-
s ) A 

(r-s ) A (r) + M 
(r) c (r)t

But M(r) (r)t - M(r) (M(r) -
( r)) p(r)]t

M(r) p(r) M(r)t Mr) p(r) (r)t

Hence A r)+ F (-)-M~r PC Mrt + Ar) ,where
_f.S SS S S S

FCr-s) - G(r-s) C (r) Wt
FG + M a (r) 0 (raS S S

10.7 The Error Matrix F for the Decomposition

t tFrom §10.6, we have A+FMDM where F F and for

i > j Fij = + (M Dt , where for i > J

I

I

'I
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= 2 (k) withGij ij

G(n-k)
G-k,--) if pivotfn-k+l] - 1

(k) - (n-kl)
C(k G(-kl if pivot[n-k+l] - 2

LI. Ui-k-I ,j-k-i

0 if pivot[n-k+11 - 0

C- (Q(n-k))

1 J-k,l if pivotin-k+l] = I

and for j > k : 0 jk = (0n-kl))j-k-1, I  if pivot~n-k+1] - 2

(0( n - k) if pivot[n-k+l] 0t2 )j-k-l,2

10.8 The Error Matrices 1  6 D, M2

(M + MH) c = b From §10.6,

(Mi n - J )  i if pivot[n-j+l] -1

(2 (n-J -I))

Mij ( 2-l if pivotin.-j+l] - 2

(M2 )i-J-l,2 if pivot[n-J+l] = 0

for i > j ,with H 0 if pivot[n-j+l] = 2
J+1 ,j

while Mj 1 for every j , and Mij - 0 for j > i

Thus (Ml)ij = 0 for J > i and (H) = 0 if

I ij 1 J+1,j

pivot[n-j+1] = 2

(D + 6 D)y = c . From §10.6, D is a block diagonal matrix with

blocks of order 1 and 2. The blocks are the pivots P(r) in §10.6,S

L
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s - pivotir] . Also, 6 D has the same block structure as D.

(M + H2 ) x -y .M, has the same structure asMI2

10.9 Floating Point Error Analysis

Since most computers now perform calculations In floating point

arithmetic rather than in fixed point (see Wilkinson, 1965, pp. 110-

188), we shall give an error analysis only in floating point.

Then, from Wilkinson (1965), pp. 114-117, we have z = fX(x * y) E

(x * y) (1 + c) , where jej < 2- t , t is the number of binary digits

used by the computer, and * is any arithmetic operation (+, -, x .

Further, we shall assume that the computer can accumulate inner-

products in floating point arithmetic. Then Ift (x1 Y1 + ... + X Yn) -

n
(XI yl + ... + xn Yn)I < ) iIy xi yi , where

i~ I

<3 -2t
< (1.06) 2 . As in §10.4, we shall assume n is any number

such that Inm < (1.06) 2-2t and we shall suppress indices. From

§10.4, we may write Inl < 2-' 0 ( 2
- t)

10.10 Floating Point Analysis for F

Consider Ar) . JA - Let i > j

Case 1: s, pivot[r] I

M O r and CI  are (r-l)xl P A P

So r-) (r), - r) C (1 + C)l (I + L)o ij 1 l j 1A _ (1 r)

I PiJI (elPj I

=I
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(r-l) -(r)) C(r) (r) (2 + c)

So Ei ( c (M 1 )1 (C1 )(+

(A(r))(r) I <  ( r )

1 - IAi+1,+lLuJli 0 (C 1J)) - 0

Cr-I) 2-t -1 -t r)

(MI r) A (r) A(r)l (I + E)
j+1,1 11

(C r) (r)-l. (1 + ) So (Q r)) - £(C (r) (r)-1
-1 <j

(r () t r)r). (r) A Cr)-l

I(M r))J P 1  + 2- t ) I(C C 1. 1 ) J A -A11 -

(r)/(r) < /a

So 1(0 (r) <_ 2-/t and I(M (r)) Il< (1 + 2-:/c • Thus

(10.10.1) IE-)I 2- t ( r )  + 2/c + 0( 2 -t)] , and

(1 .1 .2 IM r)p(r) 0 (r)t) I < (r) (1+ 2- t )  2-t/O =

(lOlO2) IMr  I 1 "ij 0

1 (r) 2
-t [1/a + 0(2-t)]

0

Case 2: s - pivot[r] m 2

) A121

M2 , 0 2 and C2  are (r-2)x2 P 2j

and dj ( (r)>p ) (C) r) 2 > 2 ) ,( )2

So A (r-2) C [( r) ( (r) (C (r)) + (1+) '+ -
j -(( 2 )ij-( 2 ) i 1 dEi
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(M~r))i2~~ (C ) (I + ) )(1 + ) . From §10.6, we have

(r-2) (A(r) - (r) ((r) [ + C)3 1]

1j 2 ) C 2  Il ( 2  )JI

() (Cr) (1+ U)2
- 2  12 ( 2  ~J2

(10.10.3) IG(r- 2 )I < 2-t (r) (, + [3 + 0 (2-t)] I(M 2 r) +

[2 + 2- t] M (r-)i 2 )

A(r) (r) (r) (r)
Ar) A A2 2  (1+ -A1  A2  (I + 0)

Now M 2 )1 (r) (r) (r)' + IE)

22 A1 1  A 2 1

T(r) A(r) A(r) C(r)(r Cr) (r) (r)

A A2 2  (2 + E) - A2 A2r E (2 + E) + A2 ( - A22 Al ( C
ii 22i2 21 21 22 11

From §10.5,

C)(r) (r)2  Ct r)2  t](r)
1(0 2 )i < to 0 () + pr)) 2- (2 + 2-) + Cr) 2  + W 1I2(r)

W(r) 2- t (2 + 2
- t) 2-t 

p(r) (1+( 2 ) 2 -t -
2

(r) _ (r) + O<{ 22 i+

0 1r)L _ c + +--

But (1 + C2 )/l + a) < 1 since O<a< 1 . Thus we have

(10.10.4) (O r)) 1 I 2-  (3/(l - a) + 0 (2-t)1

Similarly, we obtain

(10.10.5) (O ( r) ) < 2- t {3/(l - a) + 0(2-t))2 12l -
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106 we recall: M (r) (r) p(r)-l + 0 (r) ButFrm 106,wereal: 2  2 I 2 U2

(10.10.6) I(C~r) (.(r)-l) . (r) (r) + (r))/ (r) < 1l a

Thus from (10.10.4) - (10.10.6), we have for j - 1,2

(10.10.7) I(. r) < (I + 2- t (3 + 2 -t]}/(l a)

From (10.10.3) and (10.10.7), we conclude:
(r'2) l -t oCr)t

(10.10.8) I1G1 r 2 <1 + 5/(1 - a) + 0(2-t)}
o we n (r) (r) (r)t

Now we need to bound ( P 02 j From §10.6, we

recall: M(r) (r) . C (r) + 0 (r) p(r)

2 2 2 2

From (10.10.4), (10.10.5), and §10.6, we have

(10 .0 9) i (r) p (r) < (r) 2-t
.. .. 2 2'iJ' <  (1 + [3(1 + )/(! - c) +

since Cr) p < C, r)

From (10.10.4), (10.10.5), and (10.10.9), we conclude:

(10.10.10) I(M~r) p(r) 0 r) t) I <  + 0 ( 2 "t)} 2 p(r) 2Ot/( 1

10.11 Summary of Floating Point Analysis for F

From §10.7, (10.10.8), and (10.10.10) we have for i > J

(10.11.1) IG I 2t < [1 + 2/C + 0 (2-t)] W p1 k) +

[1 + 5/(l - a) + 0 (2-t)] Wi k)

(10.11.2) I(M D Ot)I 2 t < l/A + 0(2-t) i (k) +

16/11 - a) + 0
"(

2 t 1

----------------------------
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From (10.11.1) and (10.11.2), we conclude for i > j

, (k)
(10.11.3) IFi1 I 2t < 11 + 3/a + O( 2 tfl , (k)O

[I + 11/(1 - a) + 0 ( 2 -t) 1  k

We shall now asp',me tha. the first 0(2- ) term in (10.11,3)

is bounded by 0.01 (which is true fot t > 8 for all a ) and

that the second 0(2 - t ) term in (10.11.3) is bounded by 0.02 (which

is true for t > 14 when a - (0 a (I + /r7/8)).

Under these assumptions, we have:

(10.11.4) IF 1I 2t < [1 + (3.01)/(J 11 (k) +
1 + (11.02)/(1 - ) 1 1i]Jk

while for a -a 0 , we have:

(10.11.5) IF 1I 2' < 5.71 + 3.16 1" w

10.12 Comments on the Bound for F

From (10.11.4), (10.11.5), and §10.3, we see that we have a good

bound on F (and hence on E ) only if the maximal elements (k) in

the reduced matrices.( do not grow too large.

From Corollary 3 of 55.7, we have for OL - C

(k ) < (2.57)n-k P Thus (10.11.5) does not automatically give a

good bound on F if n > t . At the present time, most computers

have t 4 50 . Hence (10.11.5) cannot guarantee a good bound on F

for systems of order > 50

i
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According to Wilkinson (1965, p. 215), if L U - A + F , then

max IF I < (2.01) n max k) for Gaussian elimination, where
iJ k

x(k) < 2 n for partial pivoting, while MIx (1) < rn f(n) )0

for complete pivoting.

In Chapter 11, we shall show that for the diagonal pivoting method

with 0 < a < 1, we have:

max ( V<n f(n) P0 c(a) h(n,u)
k 

0

In Chapter 12, we shall show that for i a0
c(O O ) h(n,a ) < 3.07 (n-1)0 .446 for n > 2

Then from (10.11.5) we have for a - a 0 :

IFIa < F -t rn f(n) P (3.07)n0.446 [5. 7 1p + 31.6(n-p)/2]
i,j

where p is the number of II pivots used. So
0 446

max IF I < 2 ((n) t1 (3.07)n [15.8n 10.0 9 p)
i,j

< 15.8n 2 -  f(n) ii0 (3.07)n 0 4 4 6

which is within a factor 7.9(3.07)n 0 4 4 6 of the bound for max IFi IiJ

for Gaussian elimination with complete pivoting.

10.13 Floating Point Analysis for a D

The blocks of D are of order 1 or 2

(a) Surpose [Dii] is a block of order 1. Then so is [(6 D)il]

We want to solve D i Yi .ci . but we obtain (Dii + (6 D) ii)y i

due to the finite precision; pivotin-i+lJ - 1 and IDiiI = (n-i+l)
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Thus yi (c i/Di)(1 + c) and (6 D) -D C

so (6 D)iil ( 2 - Ioii . But IDij- P(n-i+I) (n-i+l)

Thus D)1( I < 2 t  .- i+l)
p0

(b) Suppose DI+ j (n-+l) is a block of order- 2

|Di~ D.+i+

2. Then ptvot(n-1+l] = 2 and p(n-i+l) < (n-+l)

(n-k+l) (I (1+ri)] (1++ n)V ID ii Di ~+ (+ +I +)-V~,

where ni - 2
- t 0(2-t) . Since le I< 2- t , we have

(nk+) - de (n-i+l) 
2- t [1 + 0 (2 -t)] (1 + a

2 ) pjn-i+l)
2

lu~ n -k~l ) - det r2

Now yi+I . [Ci+l D1 1 (I + n) - cI Di+lI (1 + I)J(l + 6)/f ( - +  : )

and yi= ci D +li+l (1+n) - Ci+l D i+
I  ] +) (I )/(±v (nk+1))

Since Icl < 2- t ,In < 2
- t 

0 (2-t) and (n-i+l) < 0 (n-i+i)
0

after much manipulation, we have:

1(S )j ( D) ii+ I1*
< J 2 - 1 + 0(2-t)] (n-i+1)

1(6 D) i 1(6 D) [+il

10.14 Floating Point for M1  and H2

From §10.2, (M + M1)c b and (M + M2) x - y
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From Wilkinson (1965, pp. 247-249), we have:

I(M ),, I  l(12)il < 2 - t 11 + 0(2"t)] IMii , (Ml)l = 0 = (Mt) 1 j

for i < J,

(M , it,.,)Il .<q-2 [I + 0(2-t)] (n - 2 + I - J) IM I

for I j

From §10.10, M li ' I and for i > j

IMjl max (1/a, l/(I--)) (1 + 0 ( 2 -t)]

So for i > j .

t, 2-t

(10.14.1) (M)i1, M2ijI < max{lla,l/(l-a)}[l+O(2-t)13(n-2+i-j)/2

and I(M1)1  , I(M2)I '_ 2 t [I + 0 (2-t)]

10.15 Floating Point Bound for E

From §§10.3, 10.11, 10.13. and 10.14, we could express Eij in

terms of Fij and the elements of M, D, M I, M2, ard 6 D . But this

expression is very complicated.

n
Let us define IAI- max I JAij I where A is nxn. (This is

j i=&

usually called the one-norm.) Clearly, IAijI < IAI

From §10.3, we now have

(10.15.1) lE jI L IFijI + E , where

c - UM I ID + 6DI I(M Mt)I+ NMI ,,6DI ,(+Mt)l+ ID W1, I12 2 2
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IDI3 . (1 + a) max (k) From §10.13,

k

16DI i 2- t (I + ct) max p (k) 11 + 0(2"t)]

k 0

FLum 910.10, IMI, IMtI < 1 + (n-1) max {I/a, 1/(1.-a)} [1 + 0(2-)]

Let us assume 0(2- t) (1 + max {1/a. 1(1-ci)} 3(n + 2)) - 0(2- ')

i.e. let us assume n 2 2- t << 1 Then

t-
IM 1, IMtl < 2- 1 + 0(2-')].
1' 2-

Now we can bound c . Let 8 1 + (n-1) max {1/a, 1/(-a))

(10.15.2) c< 2- t (I + a) max (k) B(2 + a) [1 + 0(2-t)]
k 0

For a - ,O we have 8 < 2.781n , so

ax1 (k)(10.15.3) c < 2 max k ) (7.734)n2 11 + 0 ( 2 -t)]
k

From (10.11.4), (10.15.1), and (10.15.2) we conclude:
,(k) (k)

(10.)5.4) IJEI 2t < [1 + 3.0/a] Yj PO + 13 + 11.02/(1-a)] t (o

+ (!+ a) max p B(2 + 1)[1 + 0(2
k

From (IG.II.5. (10.15,1), and (10.15.3) we conclude for

a 0

(10.15.5) 1E1 I < 2 max p 15.80n + 7.74 nrt
k

Since .E| ,i Irl + c , from (10.11.5) and (0.15.3):

(10.15.6) 1E1 < (23.54)n2 ar (k)k
ICi

I
|

It



70

10.16 Comments on the Bound for E

From §10.12 and §10.15, we need to bound tile P(k) in order to

have a good bound or E

In Chapter 11 we shall show that max p(k) < r f(n) c0 C(a) h(nCL)
k 0 0

for the diagonal pivoting method for 0 < a < 1 In Chapter 12 we

Shall silow that c(gO ) h(n'aO ) < 3.07(n-1)0 .446 Then we would have

I <i: , (23.54)n
2 

2
- t , n 0 (3.C7)(n-1) 0.446

For Gaussi3n elimination, in order to solve A x - b , in finite

precision we actually perform:

(1) L U - A + F

(2) c- (L + SL)-1 b

(3) x= (U+6u) c.

From Wilkinson (1965, p. 215, pp. 248-252), we have (cf. §2.5):

2On max I1 and

max FI 2.01n 2 - t max k)

1E1 < 2.01n 2  2- t max P(k) [1 + 0(2"t)1
k 0

For complete pivoting, max 1
O(k) < n f(n) p (Wilkinson, 1961).

k 0 0

Thus our bound on 1El for diagonal pivoting differs by a factor

36(n-i)0 .446 from the bound on IE1 for Gaussian elimination with

complete pivoting.
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Chapter U1 An A Posteriori Bound on Element

Growth fuo 0 < a 1

11.1 Introduct ion

We saw in Chapter 10 that the bouna on the elements of the error

matrix depends on the maximum of the elementb of the reduced matvices.

Let A A ( n ) be the original symnetric matrix of order n wi1h

(k)det A # 0 . Let A' be the reduced matrix of order k

We saw in §8.4 that max A ( kA <( 2 5 7)n-k max Aij But we
ije

: , "i,)

shall show in §§11.2-11.7 that we cau get a much better bound by the

use of Wilkinson's techniques for Gaussian elimination with complete

pivoting (Wilkinson, 1961; pp. 281-285).

His proof depended or, the fat that the pivots in Gaussian eli-

mination with complete pivoting were maximal elements in the reduced

matrices. Our pivoLs are rot necessarily maximal element;, but they

are closely related to the maximal elements in the reduced matrices.

We shall assume that we use strategy Sa (§5,7) for any cc

(k) (k) 2  (A)
0<cat-,andthat v > - I for all A (see

Lemma 4, §5.5). In particular, this lower hound holds for the strate-

Sies in §6.1, §6.4, .. d §8.1.

11.2 The Pivots

Let A( k ) be the reduced matrix of order k

- - - - -
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Let pk) mx (A and (k) )A
ij ai i •

i,j i

Let us assume that, whenever we shall use a 2x2, interchanges have
ensured that v(k) .A(k) A(k) - A(k) 2

1 >(k)2  (k) 2

.nsr11 22 21  - 1

(In parcicular, thiF assumption holds for the strategies in

§6.1-6.2, §§6.4-6.5, and §§8.1-.8.2.)

From strategy S. (§5.7) and §9.1, we recall:

Wk (-K i.e. i A (k)I if <if A uses a lXl pivot
W ) (k)

pivot(] 2O , i.e. if A k )  uses a 2x2 pivot

1 (k+l) ie. if A(k+ l )

(-0 if V j l , i.e. if A uses a 2x2 pivot.

Let us now define

(0c) if pivotik] -1

/- V( k )  if pivot~k] - 2
Pip. "  i if pivottkl- 2

" -+7 if pivotLk] - 0

The pk will be called pivots.

From the decomposition A - H D Mt we see that Idet Al - p1 .. p

and Idet A(k) I -p.. .pN , ince det M - 1

11.3 hadamard's Inegality

By idamard's Inequality (Gantmachcr, pp. 253-254),

nI n ~ (n)2
2 1 ~ /2 nZn/2 (n).n(11.3.1) Idet-Al!( < { 11 Ai <(nv - (n o jj 0

iml j-I

since p a x 140 'A€ Also

(11.3.2) ldet A kk)I ~ (k))k
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11.4 Bounding det A(k)

(1) If pivot[k] = 1 p (k) > (k) So o W

(11.4.1) p1 " k det A(k), < (/P(k)k (Pk iv/a)k

(2) If pivotik] - 2 v:(k) (k) If we assume

, (k) > P(k) 2 - 1i(k) for all A (k) then (k) _2 (k) 2

Thus p (k )2 < V(k)(l c 2) a - c)
p0  k*V 1(

(11.4.2) p1 .' Pk Idet A(k) . (k .kI(1 -c) )k

11.5 Fundamental Inelit

From §11.4 (and later in §11.5), we are led to the following;

Definition:
SI/C, 2  if pivot[k] - 1

(11.5.1) k  1/(l-ca2 ) if pivot[k] - 2

I k+l 1+1/k

I if pivot[k] - 0

From (11.4.1) and (11.4.2) we have:

(11.5.2) Pl "' Pk ( Pk ) k  if pivot[k] # 0, 1 < k < n

We would like to have a similar equation for pivot[k) = 0 for

ouv" analysis in §11.6.

If pivot[k] - 0 , then pivot[k+l] - 2 . By (11.5.2),

,k+1.

P1 Pk Pk+1 +l 6k+1 k+1 , where 8k+l 1 (I - ci and

1 k+l 1+1/k
P P Since k l- by (11.5.1),

I
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P1 "'" Pk < [(k+l) 8k+l ] (k+l)/2 k ( - P ) k " Thus

(11.5.3) P Pkk ) k  for all k , 1< k < n

11.6 Bounding Pivot Growth

Define qk = log Pk . From (11.5.3),

k-- 1
(11.6.1) 1 qi < (k-) qk + 2k log (k ) kJi

Since Idet A (n) = p1 ... pn , we have:

(n , n

(11.6.2) log Idet A - I q
i-i

Dividing (1l.b.l" by k(k-1) for 2 < k < n-i and (11.6.2) by n-i

and adding we have:

q + q2 /2 + q 3 /3 + ... qn- 2/(n-2) + qn-1/(n-1) + qn/(n-1)

nI log Idet + log (k )/(k-)
k=2

+ q 2/2 + q3/3 + ... + q n 1i(n - i)

n1
after observing that - --I - -rink r(r-l) =k-i n-i

1 n-l 1k~/(k-1) I (0)(11.6.3) q + qn/(n-l) <  n lo i (k +- log Idet A

k=2

From (11.5.3), Idet A(n)I < (Y/r-T- P n We define
r

(11.6.4) f(r) R( I ki/(k- )l 1/2
k-2

r
(11.6.5) h(r,a){ 11 ak 1/(k-1)} 1 / 2

k-2
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From (11.6.3) we now have

q, + qn/(n-l) < log f(n-1) + log h(n-l,a) + n log (n n) + n q /(n-1)
n2(n-1) n n

With simple manipulation we have

I- q < log f(n-l) + 2n- log n + log h(n-l,a)

1 1+ 2(n--l) log 8n + j log (n 8)
1

log f(n) + log h(n,cL) +1 log (n n)

n

Thus we conclude

(11.6.6) p/P n < An f(n) IX h(n,t)

Similarly, we have for 1 < k < n

(11.6.7) AkPn < -k + 1 f(n - k + 1) *'- l h(n- k + l,a)
Pk/pnn-k+l

<_ ( n-k+l

(11.6.6) and (11.6.7) hold for all OL , 0 < a < 1 , under strategy

S (§5.7) provided that v ( k) > P(k)2  k ) 2 A(k )

a _ - ) for all (§55)

We now have a bound on pivot growth. But we are interested in

bounding element growth (§11.1). If A finishes with a 2x2 pivot we

(2)are interested in bounding p2) 0 while if A finishes with a lxl pivot,

we must bound 
(1)

11.7 Boui.dxn- 7lement Growth

We shall now express VPI' P' "n Pn' and a Pn in terms of

(1) (2) (n )

. .. P 0 and p ..
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(n) u(n) (n)
Let A-A ,U 0 0  U U ,W n V V

III if pivotin] - I

Since pivot(n] , 0 , pn i , and

r if pivot[n] - 2

i/a2 if pivot[n] - 1

8n L1/ 1 
- cL2

) if pivot[n] - 2

But 1 < 0 always. If pivot[n] - 2, then V1 <  L0 , and

(by _5.5) -< + _ 0- < /I -t 2 p0" Thus

F0 if pivot[n] - I

Pn
A ' 0 if pivot[n] - 2

1/a 2  if pivot[n-i] - 1

NOw - (1 -Bn-) if pivot[n-i] - 2

n-- (n On)1/(- if pivotin-I] - 0

Let us define:

1 __ _ V(1I__)I (_a }(11.7.1) rea - 1x

Thus we have:

(11.7.2) n <m (a) V0 , and

M(C) 1o if pivot[n] a 1

(11.7.3) VW9T Pn < n-_n,11 (n -i)r7-") ,+c(I-at if pivot n] - 2

From (11.6.4) and (11.6.5), we have

(11.7.4) (/;-)i/(nl) f(n-1) h(n-l,t) - f(n) h(n-l,x)

n
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We have two cases (§11.6) as to whether:

(a) the last pivot is lxi, i.e. pivot[l] - 1 ,

(b) the last pivot is 2x2, i.e. pivot[2] - 2

Case (a): Let pivot[i] - 1 . Then p " () . (1)

From (11.6.6) and (11.7.2) we have

(11.7.5) 1.1(1) " < r f(n) p m(a) h(n,a)

Case (b) : Let: pivot[2] a 2 . Then P2 " and

(2) (2) (2) (2) (2)'
41 e 1 Since we have assued v >

V(2 ) > (1 Cta2 ) P(2)'2 Hence

(11.7.6) 0(2 )  -r_ P21V I

From (11.6.7) with k - 2 and from (11.7.6) we have

(11.7.7) P(2) < n- f(n-1) h(n-l,ct) Y p

Now we have two cases as to whether the first pivot is (i) lxl

or (ii) 2x2.

(i) Let pivot[n] - 1 . From (11.7.3) and (11.7.),

Pa(2 <_ rnl f (n-1) h(n-l,ot) m(at) p0/ a"2

But f(n-1) < f(n) and h(n-l,a) < h(n,a) . Thus

(2)(11.7.8) P 0 < vn f(n) UO m(a) h(n,t)/ '-a

(ii) Let pivot[n] - 2 . From (11.7.3), (11.7.4), and (11.7.7),

0 (2) < ~n f (n) P h (n, a) A772( a 2)

0I 0

F _ __ __
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But 2+'/(l -a 2) < m(a)/T-_ from (11.7,1). Hence

(11.7.9) P(2) < /rn f(n) pO me(a) h(n,a)/,r-

Let us now define:

(11.7.10) c(a) - m(a) i o1
if pivot[2] - 2

where m(a) - max il/a, (la)/(1-a') }

Then we conclude for 0 < a < 1

f pivot[2] 2 : 2~ u )

0

Similarly, we have for each reduced matrix A(k)

(11.7.12) w (k) < VW- k+j f(n - k+j) )0 c(k,a) h(n - k+j, a)
00

1if j I

where j - pivot[k] , c(k,a) - (a) x

i/I 2  if j =2

and 0 < a < I

Hence, for all A , we have for 0 < a < 1

(11.7.13) (k) < vr f(n) c(a) h(n,a)

11.8 Comments on the Bound

The bound in (11.7.13) holds under strategy S , 0 < a < 1 , and

under Lite assumption V (k) - for all A In parti-

cular, (11.7.13) holds for the unequilibrated diagonal pivoting stra-

tegy (9§8.1-8.2), the complete strategy (9§6.1-6.3), and the partial
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equilibrated strategy (9§6.4-6.5). (For the partial equilibrated stra-

tegy, we assume that, given a reduced matrix A(k) with Vk) - max JA(k)a I
'Jj

we equilibrated A (k) so that the maximal element in absolute value in

eacit row is pok) )

Wilkinson (1961) obtains /n t(n) vO as the bound on the elements

In the reduced matrices for solving A x - b , J0 . max IAij I , by
i,j

Gaussian elimination with couplete pivoting. We here the extra factor

c(a) h(n,) since our pivots are not necessarily maximal elements of

the reduced matrices.

We call the bounds in (11.7.11) - (11.7.13) a posteriori, since

we cannot calculate the 8k terms of h(n,a) until we know the pnsi-

tion of the blocks of order 1 and 2 in D for the decomposition

A - M D Mt In Chapter 12, we shall give a bound on c(a) h(n,a)

independent of the structure of D , for the value a - 0 =

(1 + Y17)/8 (§5.7).

11.9 Smaller Bound on Pivot Growth

If H is an nxn positive-definite Hermitian matrix and Xmi n

is the minimum eigenvalue of A , then (Shisha, p. 173):

n n-2
(11.8.1) detR< 1 H H - (nX min •- i- ii mai n 11 i2)

i-1 n~j>>I> 1

If A is an nxn non-singular real symmetric matrix and X is

the minimum of the absolute values of the eigenvalues of A , then,

setting H - At A in the above, we have
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n nk 2. X2 0-2) A 2(11.8.2) Idet Al' H ( 1 Ai) - t AI

-~ 1=1 j n j>~l1

th
where A is the j column of A

Then Idet Al2 < (n tj2) C(A) , where

2(n-2) 2 7 2n
(11.8.3) c(A) - 1 - X lAt A I /(n P

Using an analysis similar to that in §§11.2-11.7, we obtain:

if pivotil] - I 1 )

(11.8.4) < /n f(n) p0 c(a) h(n,a) T(A)

{If pivot[Zi - 2 : P(2)

1 1

n (r))r(r-
where T(A)2 - (A) n -  £(AI and--

r-2

ECA 
2 "(r )2 r A(r)

C(A(r) ) - 2(r-2) L A r)t A(r)12J / [r V , where A-1 r 'ir t j  -

is the reduced matrix of order r (A = A (n ) ) , X is the minimu- of

(r) (r)
the absolute values of the eigenvalues of A , and A is the

th A(r)
j column of A

If det A # 0, then IrI > 0 for each A(r) If A(r)

not Ladamard (see §12.6), then c(A(r)) < 1 . If A(r) is Hadamard,

then A(r) will use a 1×i pivot and A (r-
1
) will not be Hadamard

(see Appendix A).

Thus '(A) < 1 if det A # 0 . Hence (11.8.4) gives a lower bound

than does (11.7.11), but (11.8.4) is so complicated we are unable to use

it to advantage, and we present it merely for its academic interest.
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Similarly, for Gaussian elimination with complete pivoting, we

can obtain r- f (n) .0 T(A) as the bound on the elements in all the

reduced matrices when solving A x - b , l0 . max lAijI , det A 0 0
ii

If we replace te Xr in T(A) by 10 r I the singular value

of A r)o minimum modulus.

of_
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Chapter 12 An A Priori Round on Element Growth

for a - a0 = (1 + Vi7)8

12.1 Introduction

In (11.7.13) we obtained rn f(n) PO c(a) h(n,a) as a bound on

the element growth in the reduced matrices, for any a with 0 < a < 1

From (11.5.1), (11.6.4), (11.6.5), (11.7.1), and (11.7.10) we

recall;

if pivot!k] - 1

ak = 1/( - E2) if pivot~k] - 2

( k 2  / if pivot(kJ - 0

f kl/(k-i) n 1/(k-i)H~n k i h (n, )2 11 H k ,
k-2 k-2

I if pivot[l] = 1
1 1

Me(a) = max --- } , and c(a) - mn(a) X
p 1-ap

i1 if pivot 12) 2

The term c(a) h(n,a) arose from the fact that our pivots are not

necessarily the maximal elements of the reduced matrices, but can be

expressed as multiples (involving a) of such maximal elements. The

bound in (11.7.13) is a posteriori since we cannot calculate

c(a) h(n,a) until we know the pivot selection, i.e. until we know the

position of the blocks of order I and 2 '1 the block diagonal matrix D

for our decomposition A "M D M t for a given value of a

0a < I.
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We would like an a priori bound on the element growth, i.e. a

bound independent of the selection of a lxl or a 2K2 pivot at each

stage.

We would also like the a priori bound to hold for all a

0 < a < 1. But no such bound exists, as we shall now show.

Let p be the number of lxl pivotu for the deccmpc'sition (§9.1),

i.e. there are p blocks of order I in D above. If p - n (e.g.

for a positive definite matrix, see Apptndlx A), then

h~n) -n l/ (k-1) I
h(n,T) = (1/a) - w as a-1 0 . fp - 0 (see §6.3), then

k-2

n
h(n,a) > H (i/il- 2)I(kl) w as a - I

k-2

Thus we shall give art a priori bound for element growth only for

the value c - a0  " (1 + vr17")/ (§5.7).

12.2 Lower Bound on c(a) h(na) for 0 < at < 1

We shall now find a lower bound on c(a) h(n,) for all ,

0 < a < 1 , in order to show that the upper bound for a - a0  that

we obtain in §12.4 is a reasonable bound, i.e. that some other choice

of a would not provide us with a much better upper bound on

c(a) h(n,a)

Since min c(a) h(n,a) > min (a) x sin h(n,a) , we need
O<CL<1 0<,<l O<a< 1

only find lower bounds for the latter two minima.

Lemma 1: min c(a) > 2.029 .
O<OL<l 1

II
)4
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Proof: m n c(a) c(1r l) - /2 + 3/17> 2.029 . q.e.d.

We shall later need the following:

n+l nn*1--l~ ( ) < k  1 - for n > m >1.
Lemma 2: < L (r=

k-m+l( k-m k

1 <k+l 1
Proof: By elementary calculus, k+- < k -< dx< . Thus

<~~~~~ xn~ kx, o u-L
I <f~ 1 1~

+1- <x - lo < for n,m> 1. q.e.d.

Pow we cau find . lower bound for min h(n,a).

Lemma 3: min h(n,C) > nlog > n0.3465

n

Proof- Let o(a) - Y' 1/(k-1) . If p n , then
k-2

h(n,) - (W/a)w( n) If p 0 then h(n,a) - (.// -2) w ( n) t(n)

where~~~ ~ ~ ?(J_ ) 1,1 2 2 (2j1]l(j2
where L-N) 11 2j-1

Thus h(nCA) > b(,)w(n) , where b '%) - max fl/a, 11lyi-} . BuL

min b(a) - V2 , and i attained by a - liV2 . From Lemma 2,
O<wa 3.

(,)log n log b,1 G.3465

w(n) > log(n) . hence min h(n.cz) > n n > n
r01< < q.e.d.

From Lemnas 1 and 3 we obtain a lower boun d for c(a) h(n,a)

for 0 < a < 1

Theoram 1: ain c(a) h(n,a) > (2.029)n 0 . 3 4 6

0<a< 1L
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In §12.4 we chall show that c(10) h(n,a0) < 3.07(n-1)0.446

Thus our choice of Ct O0 (95.7) will provide us with an upper bound

on C() h(n,co) which does not differ much from the minimum of

c(,t) h(n,a) for 0 < a < 1

12.3 Remarks on sn Upper Bound for h(na)

We cannot evaluate the 0k until we knaw the pivotal selection,

but if ue could bound all the Bk independent of the pivotcl selection,

then we can obtain an upper bound.

Theorem 2: If 8 k < c for all k > r ,where c > 0 and r > 3

is independent of n, then for 0 < a < I

h(n, )ih(r--1,. ) < ¥(n-]. g  where y{-(-2 "~

n lg n-I

Proof: From Lema 2 of §12.2, 1 1/(k-l) < log ( -
k-r>3

1 n-1

Thus h(n,c)/h(r-l,Ci) < { i c1/ (C -I )  /2 < c
k-r

But xlogy = y.og x ior x,y > 0 . q.e.d.

This shows that if we can bound 8k independent of the pivotal

strategy for k >_ ' atud if we can consider the worst possible cases

of pivot selection for k - 2,...,r-1 and bound h(r-l,a) , then we

have a bound for h(n,ci) . (In order to consider the cases for

2 <~ k < r-l , we must have r reasonably small.)

In §12.4 we shall do this for a - a0 , and we shall have r - 5

I
.I

-- -. - - - ---.-------.- ---------- - .-- ~- --
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12.4 An A Priori Bound for a a (1 = ( + Y7)/8

For a - aO * max ( ras, + a;) 7(1 !/a Thus, for

ri if pivotil) - 1

(12.2.1) c(a) d(a)/a0  where d(a)

LI I/ a 2  if plvoti2] - 2

Now we shall show that for a a0  k is maximal for

lxI pivots for k > 5 . Recall §9.1 or §11.2 for the definition of

pivotik]

Lemma 4: For a - a0  and k > 5 , if pivot[k] - 0 , then

B1/(k-l) l/k < )/(k-1) + 1/k
k 6k+1 -

Proof: From (11.5.1), if pivot[k] - 0 , then for 0 < at < I

/k+l 1/ - a2 ) and Ik k+1 1+1/k Hence

81/(k-l) 1/k - (/a2)i/(k-l) + I/k f (k+l)k+l/kk < a2 (i/a2 - 1)2k
kc k+1

iff (k+l) log (k+l) - k log k < log a2 + 2 k log (1/a - 1)

iff g(k,a) > 0 for k > k0  for some integer k0 > 1

where g(x,a) - 2 x log (1/C&2 -1) + log a2 _ (x+l) log (x+l) + x log x

- g(x,a) - 2 log (1/a2 -1) - log (I + /x) > 0ax

iff x > l/[(1/C 2 - 1)2 - i]

In order to evaluate this inequality, we now fix at a0 . Let

G(x) = g(x, C)

0_
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Thus G'(x) -x g(x'0 > 0 iff x > 0.94 . So G(x) is a

monotone increasing function for x > 0.94. Now G(4) - -0.476 and

G(5) - 3.698. Thus g(k, 0) > 0 for k > 5 q.e.d.

Now we can apply Theorem 2 of §12.3 and Lemma 4 to obtain the

[ following two necessary lemas.

log a -log a
Lemma 5: If pivot[5] 0 2 , then h(n,ao)/h(4,aO) < 3 (n-1)

0 0k
< 0.613 (n-i)

0 .4 4
6

Proof: By Theorem 2 of §12.2 and Lemma 4, h(n,a0 )/h(4,±)

L log a.0  -log a0  0.446

< 3 (n-i) < 0.613 (n-) . q.e.d.

Lemma 6: If pivoti5l - 2 , then h(n,ao)/h(3, O) < 0.717 (n-i) 0 .446

Proof: If pivot(5] = 2 , then pivot[6] 0 2 , so by Theorem 2 of
log (0 -log a0

§12.2 and Lemma 4, h(n,ci)/h(5,a) < 4 (n-l) Since

pivot[5] - 2, / 1/3 1 /4 1/2

(4 85 00
oga 1 1

4g 0 ( 3 a4 4 1/2 < 0.717 q.e.d.

1

Now we need only to bound (2 1/2 for pivot[51, 2 and

1 1
2 3 1/2

{82 83 84 } for pivot[5] # 2

(iL0)3/2 if pivotf2=I
Lemma 7: If pivot[3] - 1 , then h(3,aO) -

L 0(i.c) if pivot[2l 2

< 1.96.

kI

[
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Proof: Since pivot[3] - 1 , 0 r T and pivot 12] 0 0
0

- if pivot[2] - 1

So a 2 , and h(3,aO) < 1.96.

1-' if pivot[2] -2q.e.d.
02

Lemma 8: If pivo13] 2 , then h(3,a) < 2.74.

3/2

Proof: Since pivot[3] - 2 , S3 - and 2 * 2 i

q.e.d.

Lemma 9: If pivot[3] - 0 , then

1/3 if pivot[2] = 1h (4,aO t0 x/ r 0

1 if pivot[2] - 2

4/3
'14Proof: Since pivot[3] 0 , a4 ' 9 a = )

1  0 0

and pivot[2] 0 0 . So B2 . q.e.d.

1 if pivot[2] = 2

Now we put Lemmas 5-9 together to get a bound on c(a0) h(n,c 0 )

which is independent of the pivotal selection.
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0.446
Theorem 3: c(ca) h(na O) < 3.07 (n-1) ' 3 rn for n > 2

Proof: From (12.2.1), c( 4 )- d(%o)/ 0

1 if pivo:[il - 1

d ( 0 )"
l//' ;- if pivoci2] - 2

Now we must consider various situations.

Case I: pivot[51 - 2 : Then pivot[3] 0 . By Lemma 6,

0.446
h(noa0)/h(3,aO) < 0.717 (n-i)

(a) If pivot[3] - 1:

Then, by Lemma 7, h(3, O ) < 1.96 Since d( O) < A-0 ,

c(Q0 ) h(n,co ) < 2.39 (n-1)0.446

(b) if pivot[3] 2:

Then pivot[l] f1 . So d(c 0 ) - 1 . By Lemma 8, h(3,.) < 2.74

0.446
So c(O0) h(n.o 0) 

< 3.07 (n-i)

Case II: pivot[5] 0 2 : Then pivot[4] # 0 . By Lemma 5,

h(n,CO)/h(4,ot0) < 0.613 (n-1)

(a) If pivot[ 4) - 2;

By Lemma 9, d(a0) h(4,ct 0 ) 2.58 . Thus c(a O) h(n,c 0 ) <

2.48 (n-1)0.446

(b) If pivot[
4] - 1

Then 4- 1/a' and pivot[3] 0
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(i) If pivoti3J = 2

Then pivotil' I , so d(aO) - 1 . By Lemma 8,

h(3,caO ) < 2.74. Thus c(%o)h(n,a) <

16 0446 0446

(1/(X0)(2.74) /4 (0.613)(n-1) < 3.04 (n-1)

(ii) If pivot[3] 1 1

(1/Co)3/2 if pivot[2] I

By Lemma 7, h(3,cO ) -
01

1 if pivot[2] - 2

We must use this form of Lemma 7 in order to prove the theorem.

Once again we have two cases.

(A) If pivot[2] - 1

Then pivotl] - 1 , and d(a) 0 1 . So

c(c O  h(n,a ) < (1/a017/6 (0.613)(n-1)0.446

0.446
2.17 (n-1)

(B) If pivot[2] - 2:

Then d(a 0 ) 1// - - . So c( O  h(n,CO  <
00 c0% hnc 0

11/6 0.446 < .6(-)0.446(1/0o1 l/ [I/( - a')] (0 .613) (n-1)0"4 < 2.36 (n-1)O ' 4

Tius, in all cases, we have c(aO ) h(n,a0 ) < 3.07 (n-1) 0.446

for n > 2

Now 3.07 n0 .446 < 3Vn/ for n > 2
q.e.d.

A
-1
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12.5 Bound on Element Growth

From §11.7 end §12.5, we see that the elements in all the reduced

-)0.4* matrices are bounded by v'i-f(n) p10 (3.07)(n-) 46, where

-max lA Ii , under strategy S with a -ao . (1 + r/17)18 for

the pivotal strategies described in §6.1, §6.4, and particularly M8..

For Gaussian elimination with complete pivoting (Wilkinson, 1961;

pp. 281-285). the bound on element growth is rn f(n) p.1

Thus, for a - a0 I our bound for diagonal pivoting is within a

0.446
factor 3.07(n-1) of Wilkinson's bound for Gaussian elimination

with complete pivoting.

12.6 Conjecture for Gaussian Elimination

It is conjectured that the best possible bound ;.s n for real

matrices under Gaussian elimination with complete pivoting (fryer, p.

343). The conjecture is false for complex matrices (Tornheicr, 1965).

For real matrices, the best possible bound is n for n =1,2,4 and

is 2-1/4 for n-3.

A matrix R is a Hadamard matrix if IJ I - 1 and tha rows of

H are orthogonal. Then the order of H is 2 or is divisible by 4

(Davis, p. 327). Under Gaussian elimination, 111(1)1 > n (Cryer,

p, 343). Thus, a Hada-Ard matrix of order n has element growth of

at least n
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Fl 1
If H is generated by tensor products of L J(Davis, p. 326),

and if the order of H is n - 2 k , hn 1111-n - 2k

12.7 Conlecture for.Diagonal- Pivoin

If Ai Is as in the previous paragraph, then It is symmetric and

the diagonal pivoting method uses a lxi pivot at each step under stra-

tegy S OLfor 0 < a <1 , and 1H11l -mn=m2

We conjecture that the optimal bound for diagonal pivotin~g is of

the form n q(00) . We need a function q((%) >. 1 since L 1
has a + 1/a as its bound on element growth, where 0 < a < <

Thus, for n -2 ,q(cL) -(a + l/aL)/2 , and q~CL0  1.10

Or, we could conjecture a best possible bound of the form

n q(n,aL) .Then q(2,ux) -(a + 1/a)/2 and q(2,a0) 1.10

12.8 The Optimal Choice of a

The optimal choice of a for 0 < a < 1 is the value which mini-

mizes q(aL) in §12.7 for all n . Or, we could seek a sequence of a

such that aL minimizes q(n,a) in §12.7. But we do not know q(aL)
n

or q(n,a) for n >2

We could choose a to minimize c(a) h(n,a) in (11.7.11). But

Ai f(n) Pc(at) h(n,ax) is merely a bound on the element growth and is,

by no means, the best possible bound.

iI
F / _



93

Since c( 0 ) h(n O ) < 3.07 (n-1)0.446 (§12.4), while0; 00.3465

min c(a) h(n,) > (2.029) n (§12.2), our choice of a - 0

gives us a bound (ind -pendent of the pivotal selcctioa) for

c(ctO ) h(n,(%O ) which does not differ much from a lower bound for

min c(a) h(n,a) We assert, further, that q(ao) is not much greater
0<< 1

than min q(cx) .
O<OL<I

We note that inf q(2,) - 1 - q(2,1) But this implies that

- 1 , so we would use a lXl iff one of the diagonal elements were

maximal, i.e. if WI < 0 we must use a 2x2 and thus for n - 2 no

decomposition would be performed, which is to be expected since the

minimal element growth occurs when we do no decomposition at all. Thus

inf q(2,ci) - 1 = q(2,1) does not provide us with any information for

th
the general n order case if we require a to minimize q(n,)n
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Chapter 13 Iterative Improvement

13.1 The Approximate Solution

Let us assume now that we have obtained an approximate solution

z to the system Ax-b , A , det A 0 , by the method of

diagonal pivoting. The approximate solution z to A x - b can be

considered the exact solution to the system (A + E) z - b

In exact aritunetic, the method of diagonal pivoting would per-

form the following steps (see §10.2):

(1) A =M D Mt

(2) c= M 1 b

(3) y f 1 c

(4) x =M - t y

However, in finite precision we have error at each step. For some

error matrices F , M1 , D , and M2 , we actually perform (see §10.2):

(1) A + F - M D Mt

(2) c- (M + M1) - I b

(3) y- (D + 6 D)-I c

(4) x ' (M + M2 ) - t y

From §10.3, we see that z is the exact solution to (A + E)z - b

where

E - F + M1 (D + 6 D)(M + M2 ) t + M J6 D (M + M2)t + D M ]

From (10.15.6), we have for = 0 (0 0 is the one-norm):
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iEi < (23.54) n 2-t (k)
k 0

In Chapters 11 and 12 we have shown for a = a 0 :

max p(k) < n f(n) o (3.07)0(n-1)
0 .46

k 00

where 110 . max IA jI . Hence, for a " 0
ij

|E < (72.3) n 2.9446 f(n) -t

13.2 The Iteration

Let x, z . For m - 1,2,... we obtain an improved solution

x to A x - b by the following

(1) r - b -A x
m m

(2) (A + E) d - r
mm

(3) xm+1  x +d

We shall assume that (1) and (3) are done exactly. This is a

reasonable assumption if accumulated inner products are used (see

Wilkinson (1965), pp. 116-117).

Thus we shall assume the only error occurred when we tried to solve

A d - r but performed (2) (A + E) d - r instead.m m m m

The iteration is meaningful only if the matrix A can be repre-

sented exactly in the computer, i.e. if the elements of A are known

exactly and no round-off occurs when the numbers are read into the

computer.

i i --
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13.3 Convergence of the Iteration

We must now show that the x defined in §13.2 converge to them

solution xA b b s L

Theorem: Let x A - 1 b Assume IA- 1 El a < 1/2 Let
r b - A xj , (A + ) d=r , and x x d Then

lira Ix - xl 0

Proof: (A + E) d r 1  b-Ax . So (A + E)(x -x

Ax-Ax . Thus (A + E)(x - x) =E(x -x) . Since det A 0,

(I + A I E)(x -x) - A E(x - x)
rn r

Let a IA- 1  El < 1/2 . Let T = a/(1 - a) So T < 1

Ix -xl <Ax -xl IA - 1 EII(1- IA- 1 El) T IX xl- -- | -1 -rn-TIx _

< 1m- 1 Ix, - xl . Since T < 1 , lim Ix - x -0

rq.e.d.

Thus the iterative vectors converge to the solution x - A b

provided that IA-1 El < 1/2 . and the convergence in monotone in the

norm, i.e. Ix.+ 1 -xl < Ix - xl.

Now we must give conditions under which IA -1 El < 1/2 . We shall

n n

use the one-norm: 10 1 Ixii and 1A1- max ! IA 1jl
i-i I i-I

2,9446 _t<1/,whr

Corollary: If (72.3) n f(n) K(A) 2 < 1/2 , where

K(A) A1 IA-1 1 ,then lim Ix - xl 0 where x - A- bm
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Proof: From §13.1, |El < (72.3) n f(n) 0 But

po< IAI , so IA|11 p0 < K(A) . Hence |A- 1 El < (72.3) n2.
944 6

f(n) K(A) 2- t  ard the corollary follows from the previous theorem.

q.e.d.

We see that the convergence of the iterates depends on the condi-

tion number of A , and so we cannot expect iterative improvement to

be of value for ill-conditioned matrices. For further remarks on

condition numbers, see Wilkinson (1965); and on iterative improvement,

see Fox (pp. 49-53, 109-113) and Moler (pp. 316-321). As we noted in

§13.2 the iteration is meaningful only if no round-off occurred while

reading A into the computer and if the elements of A are exact.

I
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Chapter 14 Symmetric Band Hatrices

14.1 Gaussian Elimination for Band Matrices

Let A be an nxn non-singular band matrix with band widrh

2m+l << n , i.e. Aij - 0 f li-Jl > m

We could store A in (2m+l)n locations rather than n2 loca-

tions by ignoring Aij for li-Ji > m . If we could preserve the

band structure while solving A x - b , then we would save storage

and thus be able to solve band matrices of very large order in rela-

tively few storage locations.

If we use Gaussian elimination with complete pivoting, then we

must interchange to bring the maximal element to the leading diagonal

position. This could destroy the band structure and we would need

n locations to store L and U in the decomposition.

If we use Gaussian elimination with partial pivoting, then L

is unit lower triangular with L = 0 if ji-Ji > m+l and U is

upper triangular with U l 0 if li-jl > 2m+l . Thus L can be

stored in mn locations and U in (2m+l)n locations. Since L

and part of U can be written over A , we would nced only mn

additional storage locations.

Thus if A is an nxn band matrix with band width 2ar+l and

if b is a vector of length n , then Gaussian elimination with

partial pivoting requires only (3m+2)n storage locations to solve

A x - b . Furthermore, this method requires only - (2m2 + 4m + l)n

multiplications and additions.
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14.2 Diagonal Pivoting for Symmetric Band Matrices

Let A be an nxn symmetric non-singular band matrix with band

width 2m+l . If we use diagonal pivoting (see Chapters 5, 6 and 8)

to solve A x - b , then interchanges can destroy the band structure
I 2

and we would need 2 storage locations.

We have investigated many variations of the diagonal pivoting

method for the symmetric band case, but these algorithms have either

been unstable or have required more storage and operations than

Gaussian elimination with partial pivoting.

At the present time we recommend Gaussian elimination with partial

pivoting rather than the diagonal pivoting method (see Chapters 5 and

8) for symmetric band matrices, and thus we are unable to take advan-

tage of the symmetry. (For the special case of symmetric tridiagonal

matrices, see §14.3.)

14.3 Symmetric TridjgAonal Matrices

We are able to present a stable algorithm for the symmetric tri-

diagonal case which requires less storage than does Gaussian elimina-

tion with partial pivoting.

Let A be an nxn synmetric non-singular trLdiagonal matrix,

i.e. Aij - 0 if li-Jil > 1 . Let A - ai for 1 < i < n and

A ii+i -bi Ai+li for 1 < i < n-1. Asume Ial < c ,while

max ' ai l x Ibmil < a

2<i<n l<i<n-i
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Let us consider only the first step, which is typical (cf.

Appendix A, §A.3).

If b 0 , we have nothing to do, and A(n-1) - A
ij i+1,j+l

Suppose bI # 0 . Let r be a non-negative integer such that

2 r > .

If Jail _ 2 r b , then a, # 0 and we shall use a, as a
Ixl pivot. Then M 2 1  b/a A a2 - M1 , and

A11 1 1  - 2 -K 2 1 b

A (n-1) = A Thus A (n-) is tridiagonal, IM211 _ 2 r/ lb I
ii i+1,j+1 1

S(n-) + 2 r , while A(n-l) < 8 otherwiee.

If la1 I < 2 -r b2 , then we shall use as a 2x2II b1 a2

pivot. (Note that we make no interchanges.) Then
21 >b - , a2 > b2 (1 - 2 r a > b2 (1 - 2-r 8) > 0

IaI  2 1 1 1 1 21) b1

since 2
-r 8 < 1 by assumption.

Now M3 1  b b 2 /(a a 2 - b2) , M3 2 -a 1 b 2 /(a 1 a 2 - b2)

A (n-2) _ a - b and A(n-2) . A therwise. Thus A n 2)
11 3 32 2 ' ij i+2,j+2

is tridiagonal, 1M31 1 l b2 1/[1b1 l (1 - 2 r 8)]
-r- (n-2)1 2-r a

1M3 2 1 < 2 -r 81(i - 2 -r 8) <All ])i 8I(1 - 2 8) , while

IA ( 2 ) <__ 8 otherwise.

We see that the bounds on the elements of A (n- )  for a lxl

and A( n - 2 ) for 2x2 are independent of the bound a on Jal
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Thus the pattern continues throughout all the reduced matrices. Hence

we conclude ; each reduced matrix A(k) is tridiagonal,

IAk  < max {6 + 2r , 6/( - 2r 8)} ,while IAi'(I <B

otherwise.

Usually we normalize by choosing I 1 Then,

Ai < max (1 + 2r 1/(1 - 2r)} while IA(kI 1 otherwise,

(k) r
for each reduced matrix A . Since 2 >B- r > 1 . Hence

A  )1k < I + 2r  Thus given any positive integer r , we have

Max max JA(k)I < 1  2 r (- 3 for r - 1)

k iJi

A backward error analysis of this algorithm shows tht it is very

stable (since the elements of all the reduced matrices are bounded by

I + 2r , which takes on its minimal value 3 for r - 1 ).

Thus we can decompose A - M D Mt , where D is block diagonal

with blocks of order 1 and 2, and M is unit lower triangular with

M - 0 if D #0 and with IM I - O if 1 > +2
il i+l'i 'ij' i >+

We shall need an n-vector array to record the pivotal selection.

We set pivot[k] - 1 (2) if we use a lxl (2x2) pivot for A~k) If

pivotik] - 2 , we set pivot[k-1] - Mnk+3,n-k+l . Then we need only

2n storage locations to store the rest of M and D (these we write

over A ). Thus we need only 3n storage locations for this algorithm.

From §14.2, we see that Gaussian elimination requires 5n storage

and 7n operations, and is very stable for tridiagonals (see Appendix

A, §A.3).
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We would also like the number of operations required for our algo-

rithm to be less than 7n . However, if we use the algorithm in the
1 1

manner in which we have expressed it, 8;-- n - 2- p multiplications
2 2

and 5n additions are required, where p is the number of lxl

1pivots used. Thus between 6n and 8- multiplications are required.
2

(We ignore multiplication by 2 in the count.)

However, we can reduce the number of multiplications from

1 1 1 3
&2 n - 2- p to 7 n - p if we implement the algorithm in the

following manner:

(We present the first step of the algorithm in Algol form):

if b[l] - 0 then M[2,1] :- 0

else begin temp :- al1]/b[l];

if abs (temp) > abs (b[lJ)x2+(-r) then

begin M[2,1] :. 1/temp; a12] :- a[2] - M[2,l]xb[l] end

else begin calc :- tempxa[2] - b[l];

M[3,1 :-- b[2]/calc; M1[3,2] : - tempxM[3,1];

a[3] :- a13 - M[3,2]xb[2] end

end;

A backward error analysis shows that this implementation of the

algorithm is also very stable (since all the reduced matrices are

bounded by 1 + 2r ).

1 3

Now min (1 + 2r) -3 for rl ,while ( 71-n--Ip) -#6n
r>l 2 2

as r - (since the larger r is the more likely the choice of a
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lxi pivot becomes). But (1 + 2r) as r * , and thus we would

not have a good bound on the error matrix for large r . Thus in

practice, we must make some reasonable choice of r > 1 so that
1+2

r  is not too large but so that 71 3 is reasonably small
50 2 2j pv sraoal ml

(i.e. as close to 6n as possible, and hopefully not more than 7n ).

We have considered many versions of diagonal pivoting for the

tridiagonal case. The minimal storage possible is 3n . The above-

mentioned algorithm had the least operation count of all the versions

studied.

Since this algorithm requires between 6n and 7i n multiplica-

tions in comparison to 7n for Gaussian elimination with partial

pivoting,we can recommend this algorithm for general use only if

storage of 3n rather than 5n is crucial to the user.
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Appendix A Miscellaneous Results

A.1 Diagonal Pivoting for Positive Definite Matrices

If A is an nxn symmetric positive definite matrix, then the

maximal element of A is on its diagonal. So p . 0 and, according
(n-1

to S , we use that r-qximl diagonal element as pivot. But A 0 -1)

is also positive de ir.'te. Thus p - n (where p is the number of

lxl pivots used in the decomposition.)

Since V(k) = (k) for each A(k) , calculating p0
(k)  is unne-

0 1 03

cessary. (This calculation would require n additions for all

(k)
the .) Thus if we know that A is positive definite, we may

(k)
omit the calculation of the p k , and our method is identical to the

method of congruent transformations (§2.7). If we also omit the cal-

culation of p(k) and use the first diagonal element as a lx' pivot

(non-zero since A is positive definite), our method is identical to

L D L t (92.7).

From the above we see that the L D Lt method and the method of

congruent transformations (i.e. L D Lt with pivoting on the diagonal)

are special cases of the c.iagonal pivoting method, and either of these

may be used if A is definite. (See §§2.6 - 2.11 for further remarks

on this topic.)
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In our algorithm for the diagonal pivoting method in Appendix C,

we allow the following options:

(I) If A is indefinite, then we must use diagonal pivoting.

(2) If A is definite, then we may use:

(a) L D with pivoting on the diagonal (by omitting the

calculation of the p (k) ), or
A2 (b) LBD Lt (by omitting the calculation of the P.k and the

0J

A*2 A Result for Symmetric Hadamard HatriceeI'An nxn real matrix H is liadamard if IIIl 1 110 for all

ij

iI where po> 0 , and H Ht -n pI 1. Usually we normalize by

choosing ti 0 .1 . Thus all the elements of H are of the same modu-

Ilus, and the columns of H re mutually orthogonal, i.e. if H is

t th t
te columnnof H, then H H~ -n6 whete

i i

if i -j

6 is the Kronecker delta.
ij

, If u loih o the diagonal pvoting method o symtiGa sin pemnation

first step under any strategy. Then the reduced matrix H (-)has

| eawthe following re tipoperies<~~is f A sidfnie hnw yum s t di au a nitin atio

th

Theorem: is not Hadamard, and the angle between any two

H(n-1)columns ofs H i e/3



A- 3

Proof: Let us assume 1- 1 We use H as pivot. Let

(n-1).
B- H

Then Bij - Hi+lJ+I - Hi+l,1 H J+ l,/HI1 for 1 < ij n-I.

n-I n-I
BBtB Y X B Bks - (H- Hr+ll Hk+,/HIl)
r s k-l ki(r+lk+l

(if 6+i,k+]. - s+ll Hk+I1 /H11 )

= H
t

. t ~ H t H (H /H )Ht H (Ii /H) +
r+l s+1 1 +1 r+l,l 11 1 r+l s+1,1 11

tH (H H /H2)Pt H + Ht H 0 H /H2
I  1 r+l, 1  s+1,1 11 r+1 s+1 1 1 r+l-1 s+1,1 11

If r 0 s , then Ht H 0 ,40 Bt B - - n since
r+1 S+1 r s

t

H - I for all i,j and H H1  n.
ijI

Thus Bt B 0 0 for r s, so H (n1) is not Hadamard.
r s

Further B B = n + n (H2  /H2  2n . Define
r r r+1, 11I

IB 12 = Bt B  and cos O(r,s) B B /(IB C IB 1). Then
r r r r s r s

cos O(r,s) - - 1/2 , so O(r,s) ± 1- 3 for r 0 s
q.e.d.

A similar result holds for Hermitian Hadamard matrices.

A.3 Gaussian Elimination for Tridiagonals

Let T be an nxn tridiagonal matrix (i.e. T j - 0 for
is

li-il >1x). suppose ITn[! < ci , and I~j < S otherwise.
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((k)

Theorem: Let T be as above. Then for any reduced matrix T~k

under Gaussian elimination with partial pivoting T (k )  is tridiagonal,
2(k)I ,(k)I

IT < 2 , and I < otherwise.

Proof: The situation for k - n-1 is typical.

If IT111 > IT2 1 1 , then we use T11 as the pivot. So

(n-1) - '2 /T while T ( Totherwise. Thus
- 22 21 12 1i+l,j+l

Ti Is r idiagonal, ITJ 11> < 2 and!IT '>; row

ot he rwise.

If ITIIl < IT 211 then we interchange te first and second rows

an seT astepio. oT(n-1) .. T/ (n-1).-T T/
21 s l2 - 22/21 ' 12 -T23 T11 T2 1 '

while T(1 - T otherwdie. Thus T (n- 1)  is tridiagonal,
ij i+1,j+1 o

IT.(n-1)I (< 28 , and IT < 18 otherwise. q.e.d.

From the theorem and §2.5, we conclude that Gaussian elimination

with partial pivoting is very stable for tridiagonal matrices T,

since max max IT < 2 m- x ITI
k ij i i
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Appendix B Algorithm for Symmetric Equilibration

B.1 Discussion

The following Algol procedure will equilibrated any nxn sym-

metric matrix A so that D A D is equilibrated, where D is

diagonal. A is replaced by D A D , and the inverses of the diagonal

elements of D are stored in the vector d (See ChapL! r 7.)

B.2 The Algol Procedure

procedure symequil (A, n, d);

value n; array A,d; integer n;

comment the symmetric matrix A of order n is equili-

brated and the symmetric equilibrated matrix D A D ic

-*1
stored in A , where U = diag (dill,..., din]);

begin integer i.j; real t;

for i := ct.1 1 until n do

begin iij :- sqrt (abs (A[i,i]));

for 3 :- 1 step I until i-i do

begin t :- abs (A[iJ]);

if t > d[i] then d[(I :- t

end;

if d[i] 0 0 then

begin for j := I step 1 unti: i do

A[i,j] - Alijl/d[Li];

for j :- i step 1 until n do

AIJ,i] : AiJ,i]/dti];

_i
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end;

end;

for i :- 1 stEp I until n do

if d[i] - 0 then

begin for j :- i+l step 1 until n do

begin t ;- abs (AIJ,i]);

if t > d[i] then di| :- t

end;

if d(i] - 0 then oto alarm;

for J :- i+l step 1 until n do

A[J,i] := A[J,i]/d[iJ;

goto out;

end;

alarm: print ('this matrix has a null rows)

out end;
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Appendix C Algorithm for Diaoal Pivoting

The following listing of an Algol procedure will solve A X - B

by the diagonal pivoting method, where A is an nxn non-singular

symmetric matrix and B is a vector of length n .

The L D Lt method (symmetric Gaussian eliminatio' and the
method of congruent transformations (L D Lt with pivoting on the

diagonal) are special cases of the diagonal pivoting algorithm.

The matrix A is assumed to be stored only in its lower triangular

part. A is decomposed into A = H D Mt , where H is unit lower

triangular, D is symmetric block diagonal with blocks of order 1 or

2, and M[i+l,iJ = 0 when D[i+l,i] 0 . H and D are written

over the lower triangular part of A

A is declared [1 n, 1 : n] and B is [1 : n . Upon exit,

the solution X to A X = B is stored in B , i.e., X[i] is

stored in BKil

If A is indefinite, then set DEF = 0 and the general

diagonal pivoting method is used.

If A is (positive or negative) definite, then we may omit the

calculation of the maximum off-diagonal element in the reduced matrices.

If DEF = 2 then this is omitted and the algorithm is identical to

L D Lt with pivoting on the diago"l. The pivoting on the diagonal
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may also be omitted if desired by setting DEF 1 , and then the

algurithm is identical to L D Lt

The algorithm,as presented below, is by no means, in its most

efficient form. In particular, as written, no advantage of symmetry

is taken to reduce storage. Instead of using only the lower triangular

part of Ajl:n, 1:n], the algorithm should be coded so that the lower

triangular part of A is stored in a one-dimensional array of length

n (n+l) . Further, B[1 : n] could be replaced by B[l:n, 1:k]

for solving a system with k right hand sides.
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*pw('CF IIPF [V1 Ie (A I.p orUEF)

tm)Ays lkP ,p tINTFrEP* NiOEF to

t ('1,IAP f;T i ';tLvFS; A X 0 R BY THF L)TAGONAL PIVOTING MFTHOD
W AfP .8Tr A SYM AFTRIC MATPIX oF ORDERP N AND

P IS~ A VWrT)R OF LENGTH N t
*C~t-rN.T* A~ L5 A:Ur'ED To HE rTOPEn ONLY IN ITS LOWER

lkIAl tLLAP PART, M AND D APF WRITTEN OVER A WHERIE
A = 1 C m TRANSPnSE. M IS IuNIT LOWER TPIANGULAR,
Al' : I' IS RLOCK DIAGONAL WITH 13LOCKS OF ORDER I OR 2.
AN. "/11./ a (0 WHE~t #(KI.,*OT EQUALS 0 ..

3fCfOJMFvT* IF A 14; It..EFImITE9 SET DEF *0ANO THE DIAGONAL
PIVOTIIc, tETHOC IS USEr.,

*CnVMFNt\T IF jM IS (POSITIVE C10 NEGATIVE) DEFINITE, THEN
SIT IF =1 AKC L C L TRANSPOSE WITHoUT PIVOTING
w1Itl HE -jrEfl CR SET 0FF a 2 AND L 0 L TRANSPOSE
W I c'ir CN THE DIAGONAL WILL OF USFO .,

$Pl A1.1 w-nt (*I. ()FT. AVF* TFHP, ALPHAto *

$IN-TE.J-* sAPpAV* CIAt.oE (/,.N/) t
OAPP'AYt Phw~T .91*en)*

*pLl()cFI-0pE;*~ HA~.IIA, (AeKvf~..JqM1) .9

ifVAL'JF$ tI\ 99 taRPAY* a *o *IftTFGER* Kt.'qj at

~rH~~*PAL$ Ml .9I
trotPFI T~tCAICULATFS THF t- AXIMUM. MF THE DIAGONAL OF A , ml1

umAX A(A/,) FCR K~ OLEO$ I *LEO* N, AND J IS THE

*PFCGIN**IN1Fnkk* to 141 =Afi4(A(/K*K/)) *9 J on K so
*FOP* I K1 * q TEP* I *UNTIL* N *00*

*I*AS(A(111T/)) tGREATFR% "I THFI*
*PH.-IN* pi au AlBqcA(/I,I/fl vg J i *ENO* **

IFr~l* MAYIP~.

*PIWOCF[UUP.* MAX ^(AvKvr9R9SH0*L.ml) s
* VALUE'K N t mILaM1
*ARPAY* A to *TNTEGF.R* KNspoc,,L .9 *PFAL* ?PO.m1 ..

*roCtffj~iNt CALCULATE-, 100 a MAX ARS(A(/Ioj/) ) FOR
I- *LF'~W It. OLEO* N- AtM THF INTEGERS R ANO S SUCH
TpaT AES(a(/PqS/l1 z M6, IT IS ASSUMED THAT MI I
PAiX (AES fA(/IT/) ) ) AND, vIa ABS( A(/LvL/) ) .
iFCT~:**I~T(;~*It'J .9 140 9= ml P *a S .m L so

*sF001 j *STFP* I *UNTIL* "-I *n0*
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$*L0P* j ,:KSTFP* 1 OUNT1L;9 N f$oO*

irrnpV I *il *STEP* 1 OuNTIL* N $00$

*TF* &Hq ( A(/y.J/1 . *GPFATERO MO *THNJ*

*I4Er.TN* PCO or AS~S ( At/TJ/) ) .

. an I q. S or .j 0END* *,

tpRCunuUP * It.TFPCNANC-E CAtKel) .

*VAI.k-F* KoI so *ARRAY0 A .0 *INTEGER* Kol ..

*rv-~T IlNTFQC ANG-ES ROW ANDl CnLUJMN K WIT14 POW

L ~t0L CO)LUM'N) I wl-EpF K *CEn$ I AND A 15 THE REDUCED
m!ATPIX O~F CPrFP .'I 9 S

* Fr:IN* 0LdALj! !FPP v. *INTFGFR* J .

*rIoP* , .= K+1 *SlEpt I *uNTIt. N *00**
*PC INI TFvP ow At/JoK/) so tA/JqK/) qm A(/Jl1/1 $I

A(/,jei/) o3 TVMP ~j*EN*
*FnPs i tc Tol *STEP* I1 *UNTIL* K-1 000*

A(/Kt../) .= TFMF *Etn* v,

TF P . ( T l ) A / 0 / =A(/KoK/) soflA

0f*i It Ti (HIpoCF

ALPHA * ~PTH))/8 .

STAPI..

cHF,lN* rwANLF (/7/) or I to *GO1O$ PIVOTONE *END* .

*F~1N% !;TEc2CH4ANcE (A*Ktl) 'v CHANGE (/I/) or K .9

*(<TC* P~vCTCNF *FN1t*

*IF* fMl *NOT i-FSS* N~O * ALPHA *TH.FN*
* AFrINX lK1EPrHANG-F (AKo1) at CHANGE (/1/) 90 x *g

sr.C;TC' IPTvCTCNE *F~)* *g

gli-s 5 $GPIEATFQ$ I *TwFNO TNTEPCMANGF (AqSvI) #9

CH.4ANCE C/I/) on R *
*IF$ P *CRtATFct$ 1.1 *1i.4NO IKNTEPCHANGE (AtP9I.1) .9

2 *,-OTO* PIVOTTwn ts

P~vOTOfI'F

*IF# 011111)~ 2 6 THEN* *GOTn* ALAPM tI*enM~rT* kvF U E A IEI PTVOT
*FOP* J z: 141 $STEP'* 1 *UNTIL$ N *00*

*Cfl.,~E t /jvl/) HvSr BEEK, SET FOUAL TO TIE MULTIPLIER so

gF0o,* j .= 1+] fITEP* I *UNTIL* N *rO0*

Ito#r z' *: 1 *rTEI* I *UNTIv_* J t'0I(J K ) .= A 1 * l
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srnpMFr'Tt 1'+.. A(,e/ HAVE tiFEN~ SET To THEIR NEW VALUES .
*CflMMFe'T* PTvOH,/1/ a I Ir WE UqE A IXI AT ROW I as

*IF* I *PFT U;E.TEP* *THEN A rZOR 0 STAR
1C~#~F~'* FSE AGl0 FIN,( Cy

t4~~ I F S T*2 TSFP z TUTL J-1, * *DOALAR

A(/Jql/) .8 A(/J.oc/) - A(/Kqt/)*A(/Jo1/)- /Kl/*
A(/J.14.1/) a

*r0N'Ft4T* T.E *A(/,gK/ HAVE REE~' FET Tn TH~EIR NEW VALUES as
SAVJF .3 A.(/JsT/) as TEMP .uAC/J9I1/1) go

A(/JgI/) .=(/.,.1)SV A(/I*39I/)TFMP)/lET so
/d/sT'/).= (A(/1I/)*TFMP - A(/I#)9I/)*SAVE)/OET a

~C~iM~~T A(~g~/)ANn A(/Jo1.1/) HAVE BEEN SET EQUAL
IC THE APPInPPIATF MULTIPLIFR "At/jtj/) *r' Ac/,.,j/) - AC/JI/)ogSAVE - A(/Jtl.1/)TEMP .,

*Crn lF"ITt PTv0T(/I/) a 2 IF WE kir., A 2X2 AT N~OW I AND THEN4 DET IS

PIVOT (/I/) -= ? -9 PIVOT 1/1.1/) sc !)ET .w 1 on 1+2 ..
*IF* I t?'CT (PFATEP* K~ :THEN* *rI0Tfl9 START

*FI 5F* *GO~lr* FI~r) C .

*Cti11-4ft'Ts Inv. F')Fmr = m~ lIKvESF TTM.FO, 14 A0f) STORE IT IN 8 .9

T

P~FPiAT.

~vF*~H(/J/l .' f(/I/) got R(/CHANGE!/I/) I) .

RC/ CtH~h'iF/I/) I) .q AVE so
*IF;, P~vrT(/I/l = I THEN* *k.FG1N*

*rH : .= 71 * TEr1* I *INTIL* N *Cn*
[,(/j/) .. = kU/.j/) - A(/joT/I 4b P./I/) e

lo. 1. *Fkiv{0 *FLSE49 *pCIN*
S SAE . ~/Ii,).' (/I*1/) . P(/ CHANflE(/I*1/) as

P(/ CHArFI4I/) on e SA' at
*FOP$ j *z 1.2 iiSIEPs 1 *IUNTIL* N tflO*

I .= I+? *Etn# .,

*IF* I st\Cl GliFATER* $ *THEN,$ $C6oTO* REPEAT at

as~

srrFTg iC-4 SflL\F r. Y c Ar'fl STnPE Y IN THE VECTOR 8 .
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SOL VF..

11JFS PIV~i1 (/I/) *T i

joffs I $(EfTvFW* h. *Tl4EN' *COTO* FiNfl x
OFICF* *r'ryTfl SO, VE

4V~Nrs .
LTM R(/HI/) o, SAVE au BUT41/I .9 DET ou PIVOT(/!4j/) .

M(/1) *C 1FAP(/I41.1.1/) - SAVFOA(/141.I/) )/OET go
I~'/.W)*: SAVE*A(/ItT/) -TFMPOAC/I.1,I/) )/OET *

*1F*I #i-'iTEPgf N OTE, OGOTO0 FIN~DX *FLSE* *r7OTO* SOLVE .

*()mmUF Ts I~CAw c-OtVE X am INVFRSE TRANSPOSE TImES Y wH'EPE Y IS
SYI'RFr IN TWF VFCTOP 8 ANfl STrnRE X IN 8 t

F t:IX

CALC so W$I PlvCT(/I/ a 1 *Ti.EPm*

*FOP* J T.: *. STEP* 1 *UNTIL* N son*~

SAVF .= tb(/T/) *,B(/!/) az R/ CH4ANtE(/I/)I).
83(/ .=M('(I) )* SAVF .* I *z I-1 *END*

*FLc E* 1'9LQ.INl *FCR* K on I-le! *00n

WrR* J *a T.1 *STEP* 1 *tINTIL* N *PO

*F Nfl .. OFCP$ K a~ 1-1, 1 000 *EGIN$
SAVF ex P(/K/) ., R(/S(/) on RU/ CHANGE(/K/)I).
BU/ C"1ANCr(/K/) oft . AVF go *END$,#

I =~ 1-2 tENI:
$IF* 7 $f,~T LFsci 1 *THFNI* *Gr.Tfl* CALC .

*G~OTr' OtiT

ALAPPM

nULTPLJT (61 #(* *(s SIrtrULAW MATPTX ) ~ 2.

OUT .. *FN[O$ PIVClT ,C
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